## Calibration and simulation results from a merger between Budweiser and
## Old Style.
## Source: Epstein/Rubenfeld 2004, pg 80
prodNames <- c("BUD","OLD STYLE","MILLER","MILLER-LITE","OTHER-LITE","OTHER-REG")
ownerPre <-c("BUD","OLD STYLE","MILLER","MILLER","OTHER-LITE","OTHER-REG")
ownerPost <-c("BUD","BUD","MILLER","MILLER","OTHER-LITE","OTHER-REG")
nests <- c("Reg","Reg","Reg","Light","Light","Reg")
price <- c(.0441,.0328,.0409,.0396,.0387,.0497)
shares <- c(.066,.172,.253,.187,.099,.223)
margins <- c(.3830,.5515,.5421,.5557,.4453,.3769)
insideSize <- 1000
names(price) <-
names(shares) <-
names(margins) <-
prodNames
result.logit <- logit(price,shares,margins,
ownerPre=ownerPre,ownerPost=ownerPost,
insideSize = insideSize,
labels=prodNames)
print(result.logit) # return predicted price change
summary(result.logit) # summarize merger simulation
elast(result.logit,TRUE) # returns premerger elasticities
elast(result.logit,FALSE) # returns postmerger elasticities
diversion(result.logit,TRUE) # return premerger diversion ratios
diversion(result.logit,FALSE) # return postmerger diversion ratios
cmcr(result.logit) #calculate compensating marginal cost reduction
upp(result.logit) #calculate Upwards Pricing Pressure Index
CV(result.logit) #calculate representative agent compensating variation
## Implement the Hypothetical Monopolist Test
## for BUD and OLD STYLE using a 5\% SSNIP
HypoMonTest(result.logit,prodIndex=1:2)
## Get a detailed description of the 'Logit' class slots
showClass("Logit")
## Show all methods attached to the 'Logit' Class
showMethods(classes="Logit")
## Show which classes have their own 'elast' method
showMethods("elast")
## Show the method definition for 'elast' and Class 'Logit'
getMethod("elast","Logit")
#
# Logit With capacity Constraints
#
cap <- c(66,200,300,200,99,300) # BUD and OTHER-LITE are capacity constrained
result.cap <- logit.cap(price,shares,margins,capacitiesPre=cap,
insideSize=insideSize,ownerPre=ownerPre,
ownerPost=ownerPost,labels=prodNames)
print(result.cap)
Run the code above in your browser using DataLab