# NOT RUN {
# ** Example 1: Between Participant Predictors
#
library(apaTables)
library(ez)
# See format where one row represents one PERSON
# Note that participant, gender, and alcohol are factors
print(goggles)
# Use ezANOVA
# Be sure use the options command, as below, to ensure sufficient digits
options(digits = 10)
goggles_results <- ezANOVA(data = goggles,
dv = attractiveness,
between = .(gender, alcohol),
participant ,
detailed = TRUE)
# Make APA table
goggles_table <- apa.ezANOVA.table(goggles_results,
filename="ex1_ez_independent.doc")
print(goggles_table)
#
# ** Example 2: Within Participant Predictors
#
library(apaTables)
library(tidyr)
library(forcats)
library(ez)
# See initial wide format where one row represents one PERSON
print(drink_attitude_wide)
# Convert data from wide format to long format where one row represents one OBSERVATION.
# Wide format column names MUST represent levels of each variable separated by an underscore.
# See vignette for further details.
drink_attitude_long <- gather(data = drink_attitude_wide,
key = cell, value = attitude,
beer_positive:water_neutral,
factor_key=TRUE)
drink_attitude_long <- separate(data = drink_attitude_long,
col = cell, into = c("drink","imagery"),
sep = "_", remove = TRUE)
drink_attitude_long$drink <- as_factor(drink_attitude_long$drink)
drink_attitude_long$imagery <- as_factor(drink_attitude_long$imagery)
# See new long format of data, where one row is one OBSERVATION.
# As well, notice that we have two columns (drink, imagery)
# drink, imagery, and participant are factors
print(drink_attitude_long)
# Set contrasts to match Field et al. (2012) textbook output
alcohol_vs_water <- c(1, 1, -2)
beer_vs_wine <- c(-1, 1, 0)
negative_vs_other <- c(1, -2, 1)
positive_vs_neutral <- c(-1, 0, 1)
contrasts(drink_attitude_long$drink) <- cbind(alcohol_vs_water, beer_vs_wine)
contrasts(drink_attitude_long$imagery) <- cbind(negative_vs_other, positive_vs_neutral)
# Use ezANOVA
# Be sure use the options command, as below, to ensure sufficient digits
options(digits = 10)
drink_attitude_results <- ezANOVA(data = drink_attitude_long,
dv = .(attitude), wid = .(participant),
within = .(drink, imagery),
type = 3, detailed = TRUE)
# Make APA table
drink_table <- apa.ezANOVA.table(drink_attitude_results,
filename="ex2_repeated_table.doc")
print(drink_table)
#
# ** Example 3: Between and Within Participant Predictors
#
library(apaTables)
library(tidyr)
library(forcats)
library(ez)
# See initial wide format where one row represents one PERSON
print(dating_wide)
# Convert data from wide format to long format where one row represents one OBSERVATION.
# Wide format column names MUST represent levels of each variable separated by an underscore.
# See vignette for further details.
dating_long <- gather(data = dating_wide,
key = cell, value = date_rating,
attractive_high:ugly_none,
factor_key = TRUE)
dating_long <- separate(data = dating_long,
col = cell, into = c("looks","personality"),
sep = "_", remove = TRUE)
dating_long$looks <- as_factor(dating_long$looks)
dating_long$personality <- as_factor(dating_long$personality)
# See new long format of data, where one row is one OBSERVATION.
# As well, notice that we have two columns (looks, personality)
# looks, personality, and participant are factors
print(dating_long)
# Set contrasts to match Field et al. (2012) textbook output
some_vs_none <- c(1, 1, -2)
hi_vs_av <- c(1, -1, 0)
attractive_vs_ugly <- c(1, 1, -2)
attractive_vs_average <- c(1, -1, 0)
contrasts(dating_long$personality) <- cbind(some_vs_none, hi_vs_av)
contrasts(dating_long$looks) <- cbind(attractive_vs_ugly, attractive_vs_average)
# Use ezANOVA
library(ez)
options(digits = 10)
dating_results <-ezANOVA(data = dating_long, dv = .(date_rating), wid = .(participant),
between = .(gender), within = .(looks, personality),
type = 3, detailed = TRUE)
# Make APA table
dating_table <- apa.ezANOVA.table(dating_results,
filename = "ex3_mixed_table.doc")
print(dating_table)
# }
Run the code above in your browser using DataLab