# NOT RUN {
#####################
# EXAMPLE with artificial data
# generate a 3x4 matrix in "AP" data.format with the numbers 1..12
m.data <- matrix(data=seq(length.out=12),nrow=3,ncol=4)
m.data
data.list <- apc.data.list(m.data,"AP")
apc.data.sums(data.list)
# $sums.age
# [1] 22 26 30
# $sums.per
# [1] 6 15 24 33
# $sums.coh
# [1] 3 8 15 24 18 10
apc.data.sums(data.list,average=TRUE)
# $sums.age
# [1] 5.5 6.5 7.5
# $sums.per
# [1] 2 5 8 11
# $sums.coh
# [1] 3 4 5 8 9 10
apc.data.sums(data.list,keep.incomplete=FALSE)
# $sums.age
# [1] 22 26 30
# $sums.per
# [1] 6 15 24 33
# $sums.coh
# [1] NA NA 15 24 NA NA
#####################
# EXAMPLE with Japanese breast cancer data
data.list <- data.Japanese.breast.cancer() # function gives data list
apc.data.sums(data.list)
# $sums.age
# [1] 573 2089 4053 6220 8083 8726 7796 6318 5117 3986 3005
# $sums.per
# [1] 7519 8332 10064 13183 16868
# $sums.coh
# [1] 497 1103 1842 2858 4474 5550 6958 7471 7531 6931 5111 3080 1666 715 179
# Compare with the response matrix
data.list$response
# 1955-1959 1960-1964 1965-1969 1970-1974 1975-1979
# 25-29 88 78 101 127 179
# 30-34 299 330 363 509 588
# 35-39 596 680 798 923 1056
# 40-44 874 962 1171 1497 1716
# 45-49 1022 1247 1429 1987 2398
# 50-54 1035 1258 1560 2079 2794
# 55-59 970 1087 1446 1828 2465
# 60-64 820 861 1126 1549 1962
# 65-69 678 738 878 1140 1683
# 70-74 640 628 656 900 1162
# 75-79 497 463 536 644 865
# }
Run the code above in your browser using DataLab