Draws a line for point forecasts and adds shaded region for forecast distribution around it. This is added to a plot in the same way as
lines
and polygon
add lines and polygons to a plot.
apc.polygon(m.forecast,x.origin=1,
plot.se=TRUE,plot.se.proc=FALSE,plot.se.est=FALSE,
unit=1,
col.line=1,lty.line=1,lwd.line=1,
q.se=c(2,2,2),
angle.se=c(45,45,45),
border.se=c(NA,NA,NA),
col.se=gray(c(0.50,0.80,0.90)),
density.se=c(NULL,NULL,NULL),
lty.se=c(1,1,1))
Matrix. Up to 4 columns. Column 1: point forecasts. Column 2: forecast standard errors. Column 3: process standard errors. Column 4: estimation standard errors.
Optional. Numerical. x-coordinate for last observation. The first point forecast is made at x.origin+unit
, where unit
(with default 1) is defined in apc.data.list
. Default: 1.
Optional. Logical. Should forecast standard errors be plotted? Default: TRUE
.
Optional. Logical. Should process standard errors be plotted? Default: FALSE
.
Optional. Logical. Should estimation standard errors be plotted? Default: FALSE
.
Optional. Numerical. step length for point forecasts. Default=1.
Optional. Point forecasts: Colour of line. Same as col
for lines
. Default: 1.
Optional. Point forecasts: Type of line. Same as lty
for lines
. Default: 1.
Optional. Point forecasts: Width of line. Same as lwd
for lines
. Default: 1.
Optional. Vector of length 3. Multiplication factors for standard errors. Default: c(2,2,2)
.
Optional. Standard error polygon: 3-vector: Angle of shading. Same as angle
for polygon
. Default: =c(45,45,45)
.
Optional. Standard error polygon: 3-vector: Border of polygon. Same as border
for polygon
. Default: =c(NA,NA,NA)
.
Optional. Standard error polygon: 3-vector: Colour of polygon. Same as col
for polygon
. Default: gray(c(0.50,0.80,0.90))
.
Optional. Standard error polygon: 3-vector: Density of shading. Same as density
for polygon
. Default: =c(NULL,NULL,NULL)
.
Optional. Standard error polygon: 3-vector: Type of shading. Same as lty
for polygon
. Default: =c(1,1,1)
.
The empirical example of
Martinez Miranda, Nielsen and Nielsen (2015)
uses the data
data.asbestos
.
The results of that paper are reproduced in
the vignette
ReproducingMMNN2015.pdf
,
ReproducingMMNN2015.R
on
Vignettes
.
The function is used there.
Martinez Miranda, M.D., Nielsen, B. and Nielsen, J.P. (2015) Inference and forecasting in the age-period-cohort model with unknown exposure with an application to mesothelioma mortality. Journal of the Royal Statistical Society A 178, 29-55. Download: Article, Nuffield DP.