Learn R Programming

apple (version 0.3)

predict.apple: Model prediction based on a fitted apple/cv.apple object.

Description

Similar to other predict methods, this function returns predictions from a fitted "apple" or "cv.apple" object.

Usage

"predict"(object, X, which = 1:length(object$lambda), type = c("link", "response", "class"),...)

Arguments

object
fitted "apple" or "cv.apple" model object.
X
matrix of values at which predictions are to be made.
which
indices of the penalty parameter lambda at which predictions are required. by default, all indices are returned.
type
type of prediction: "link" returns the linear predictors; "response" gives the fitted values; "class" returns the binomial outcome with the highest probability.
...
see matplot.

Value

The object returned depends on type.

References

Yi Yu and Yang Feng, APPLE: Approximate Path for Penalized Likelihood Estimator, manuscript.

See Also

apple, cv.apple and plot.apple

Examples

Run this code

p=10
n=200
d=5
coefs=c(3,1.5,0,0,2)
intercept=0
beta=rep(0,p)
beta[1:d]=coefs
set.seed(2)
X=matrix(rnorm(p*n), nrow=n)
mu=1/(1+exp(-X %*% beta-intercept))
y=rbinom(n,1,mu)
	

fit.apple=apple(X, y, family="binomial")


set.seed(3)
testX=matrix(rnorm(p*n), nrow=n)

predict(fit.apple,testX,type="link")
predict(fit.apple,testX,type="response")
predict(fit.apple,testX,type="class")


fit=cv.apple(X, y, family="binomial", alpha=0)
predict(fit.apple,testX,type="link", which = fit$cv.loc)
predict(fit.apple,testX,type="response", which = fit$cv.loc)
predict(fit.apple,testX,type="class", which = fit$cv.loc)

Run the code above in your browser using DataLab