# NOT RUN {
# load sample data and convert into SoilProfileCollection
data(sp3)
depths(sp3) <- id ~ top + bottom
# select a profile to use as the basis for simulation
s <- sp3[3,]
# reset horizon names
s$name <- paste('H', seq_along(s$name), sep = '')
# simulate 25 new profiles, using 's' and function defaults
sim.1 <- sim(s, n = 25)
# simulate 25 new profiles using 's' and variable SD for each horizon
sim.2 <- sim(s, n = 25, hz.sd = c(1, 2, 5, 5, 5, 10, 3))
# plot
par(mfrow = c(2, 1), mar = c(0, 0, 0, 0))
plot(sim.1)
mtext(
'SD = 2',
side = 2,
line = -1.5,
font = 2,
cex = 0.75
)
plot(sim.2)
mtext(
'SD = c(1, 2, 5, 5, 5, 10, 3)',
side = 2,
line = -1.5,
font = 2,
cex = 0.75
)
# aggregate horizonation of simulated data
# note: set class_prob_mode=2 as profiles were not defined to a constant depth
sim.2$name <- factor(sim.2$name)
a <- slab(sim.2, ~ name, class_prob_mode = 2)
# convert to long format for plotting simplicity
library(data.table)
a.long <-
melt(a,
id.vars = c('top', 'bottom'),
measure.vars = levels(sim.2$name))
# plot horizon probabilities derived from simulated data
# dashed lines are the original horizon boundaries
library(lattice)
xyplot(
top ~ value,
groups = variable,
data = a.long,
subset = value > 0,
ylim = c(100,-5),
type = c('l', 'g'),
asp = 1.5,
ylab = 'Depth (cm)',
xlab = 'Probability',
auto.key = list(
columns = 4,
lines = TRUE,
points = FALSE
),
panel = function(...) {
panel.xyplot(...)
panel.abline(h = s$top, lty = 2, lwd = 2)
}
)
# }
Run the code above in your browser using DataLab