Learn R Programming

aqp (version 1.27)

sp4: Soil Chemical Data from Serpentinitic Soils of California

Description

Soil Chemical Data from Serpentinitic Soils of California

Soil Chemical Data from Serpentinitic Soils of California

Arguments

Format

A data frame with 30 observations on the following 13 variables.

id

site name

name

horizon designation

top

horizon top boundary in cm

bottom

horizon bottom boundary in cm

K

exchangeable K in c mol/kg

Mg

exchangeable Mg in cmol/kg

Ca

exchangeable Ca in cmol/kg

CEC_7

cation exchange capacity (NH4OAc at pH 7)

ex_Ca_to_Mg

extractable Ca:Mg ratio

sand

sand content by weight percentage

silt

silt content by weight percentage

clay

clay content by weight percentage

CF

>2mm fraction by volume percentage

A data frame with 30 observations on the following 13 variables.

id

site name

name

horizon designation

top

horizon top boundary in cm

bottom

horizon bottom boundary in cm

K

exchangeable K in c mol/kg

Mg

exchangeable Mg in cmol/kg

Ca

exchangeable Ca in cmol/kg

CEC_7

cation exchange capacity (NH4OAc at pH 7)

ex_Ca_to_Mg

extractable Ca:Mg ratio

sand

sand content by weight percentage

silt

silt content by weight percentage

clay

clay content by weight percentage

CF

>2mm fraction by volume percentage

Details

Selected soil physical and chemical data from (McGahan et al., 2009).

Selected soil physical and chemical data from (McGahan et al., 2009).

References

McGahan, D.G., Southard, R.J, Claassen, V.P. 2009. Plant-Available Calcium Varies Widely in Soils on Serpentinite Landscapes. Soil Sci. Soc. Am. J. 73: 2087-2095.

McGahan, D.G., Southard, R.J, Claassen, V.P. 2009. Plant-Available Calcium Varies Widely in Soils on Serpentinite Landscapes. Soil Sci. Soc. Am. J. 73: 2087-2095.

Examples

Run this code
# NOT RUN {
# load sample data set, a simple data.frame object with horizon-level data from 10 profiles
library(aqp)
data(sp4)
str(sp4)
sp4$idbak <- sp4$id
#sp4 <- sp4[order(match(sp4$id, aqp:::.coalesce.idx(sort(sp4$id))), sp4$top),]


# upgrade to SoilProfileCollection
# 'id' is the name of the column containing the profile ID
# 'top' is the name of the column containing horizon upper boundaries
# 'bottom' is the name of the column containing horizon lower boundaries
depths(sp4) <- id ~ top + bottom

# check it out
class(sp4) # class name
str(sp4) # internal structure

# check integrity of site:horizon linkage
spc_in_sync(sp4)

# check horizon depth logic
checkHzDepthLogic(sp4)

# inspect object properties
idname(sp4) # self-explanitory
horizonDepths(sp4) # self-explanitory

# you can change these:
depth_units(sp4) # defaults to 'cm'
metadata(sp4) # not much to start with

# alter the depth unit metadata
depth_units(sp4) <- 'inches' # units are really 'cm'

# more generic interface for adjusting metadata

# add attributes to metadata list
metadata(sp4)$describer <- 'DGM'
metadata(sp4)$date <- as.Date('2009-01-01')
metadata(sp4)$citation <- 'McGahan, D.G., Southard, R.J, Claassen, V.P.
2009. Plant-Available Calcium Varies Widely in Soils
on Serpentinite Landscapes. Soil Sci. Soc. Am. J. 73: 2087-2095.'

depth_units(sp4) <- 'cm' # fix depth units, back to 'cm'

# further inspection with common function overloads
length(sp4) # number of profiles in the collection
nrow(sp4) # number of horizons in the collection
names(sp4) # column names
min(sp4) # shallowest profile depth in collection
max(sp4) # deepest profile depth in collection

# extraction of soil profile components
profile_id(sp4) # vector of profile IDs
horizons(sp4) # horizon data

# extraction of specific horizon attributes
sp4$clay # vector of clay content

# subsetting SoilProfileCollection objects
sp4[1, ] # first profile in the collection
sp4[, 1] # first horizon from each profile

# basic plot method, highly customizable: see manual page ?plotSPC
plot(sp4)
# inspect plotting area, very simple to overlay graphical elements
abline(v=1:length(sp4), lty=3, col='blue')
# profiles are centered at integers, from 1 to length(obj)
axis(1, line=-1.5, at=1:10, cex.axis=0.75, font=4, col='blue', lwd=2)
# y-axis is based on profile depths
axis(2, line=-1, at=pretty(1:max(sp4)), cex.axis=0.75, font=4, las=1, col='blue', lwd=2)


# symbolize soil properties via color
par(mar=c(0,0,4,0))
plot(sp4, color='clay')
plot(sp4, color='CF')

# apply a function to each profile, returning a single value per profile,
# in the same order as profile_id(sp4)
soil.depths <- profileApply(sp4, max) # recall that max() gives the depth of a soil profile

# check that the order is correct
all.equal(names(soil.depths), profile_id(sp4))

# a vector of values that is the same length as the number of profiles
# can be stored into site-level data
sp4$depth <- soil.depths
# check: looks good
max(sp4[1, ]) == sp4$depth[1]

# extract site-level data
site(sp4) # as a data.frame
sp4$depth # specific columns as a vector

# use site-level data to alter plotting order
new.order <- order(sp4$depth) # the result is an index of rank
par(mar=c(0,0,0,0))
plot(sp4, plot.order=new.order)

# deconstruct SoilProfileCollection into a data.frame, with horizon+site data
as(sp4, 'data.frame')


# load sample data set, a simple data.frame object with horizon-level data from 10 profiles
library(aqp)
data(sp4)
str(sp4)
sp4$idbak <- sp4$id
#sp4 <- sp4[order(match(sp4$id, aqp:::.coalesce.idx(sort(sp4$id))), sp4$top),]


# upgrade to SoilProfileCollection
# 'id' is the name of the column containing the profile ID
# 'top' is the name of the column containing horizon upper boundaries
# 'bottom' is the name of the column containing horizon lower boundaries
depths(sp4) <- id ~ top + bottom

# check it out
class(sp4) # class name
str(sp4) # internal structure

# check integrity of site:horizon linkage
spc_in_sync(sp4)

# check horizon depth logic
checkHzDepthLogic(sp4)

# inspect object properties
idname(sp4) # self-explanitory
horizonDepths(sp4) # self-explanitory

# you can change these:
depth_units(sp4) # defaults to 'cm'
metadata(sp4) # not much to start with

# alter the depth unit metadata
depth_units(sp4) <- 'inches' # units are really 'cm'

# more generic interface for adjusting metadata

# add attributes to metadata list
metadata(sp4)$describer <- 'DGM'
metadata(sp4)$date <- as.Date('2009-01-01')
metadata(sp4)$citation <- 'McGahan, D.G., Southard, R.J, Claassen, V.P.
2009. Plant-Available Calcium Varies Widely in Soils
on Serpentinite Landscapes. Soil Sci. Soc. Am. J. 73: 2087-2095.'

depth_units(sp4) <- 'cm' # fix depth units, back to 'cm'

# further inspection with common function overloads
length(sp4) # number of profiles in the collection
nrow(sp4) # number of horizons in the collection
names(sp4) # column names
min(sp4) # shallowest profile depth in collection
max(sp4) # deepest profile depth in collection

# extraction of soil profile components
profile_id(sp4) # vector of profile IDs
horizons(sp4) # horizon data

# extraction of specific horizon attributes
sp4$clay # vector of clay content

# subsetting SoilProfileCollection objects
sp4[1, ] # first profile in the collection
sp4[, 1] # first horizon from each profile

# basic plot method, highly customizable: see manual page ?plotSPC
plot(sp4)
# inspect plotting area, very simple to overlay graphical elements
abline(v=1:length(sp4), lty=3, col='blue')
# profiles are centered at integers, from 1 to length(obj)
axis(1, line=-1.5, at=1:10, cex.axis=0.75, font=4, col='blue', lwd=2)
# y-axis is based on profile depths
axis(2, line=-1, at=pretty(1:max(sp4)), cex.axis=0.75, font=4, las=1, col='blue', lwd=2)


# symbolize soil properties via color
par(mar=c(0,0,4,0))
plot(sp4, color='clay')
plot(sp4, color='CF')

# apply a function to each profile, returning a single value per profile,
# in the same order as profile_id(sp4)
soil.depths <- profileApply(sp4, max) # recall that max() gives the depth of a soil profile

# check that the order is correct
all.equal(names(soil.depths), profile_id(sp4))

# a vector of values that is the same length as the number of profiles
# can be stored into site-level data
sp4$depth <- soil.depths
# check: looks good
max(sp4[1, ]) == sp4$depth[1]

# extract site-level data
site(sp4) # as a data.frame
sp4$depth # specific columns as a vector

# use site-level data to alter plotting order
new.order <- order(sp4$depth) # the result is an index of rank
par(mar=c(0,0,0,0))
plot(sp4, plot.order=new.order)

# deconstruct SoilProfileCollection into a data.frame, with horizon+site data
as(sp4, 'data.frame')

# }

Run the code above in your browser using DataLab