arkhe
Overview
A dependency-free collection of simple functions for cleaning rectangular data. This package allows to detect, count and replace values or discard rows/columns using a predicate function. In addition, it provides tools to check conditions and return informative error messages.
To cite arkhe in publications use:
Frerebeau N (2023). _arkhe: Tools for Cleaning Rectangular Data_.
Université Bordeaux Montaigne, Pessac, France.
doi:10.5281/zenodo.3526659 <https://doi.org/10.5281/zenodo.3526659>,
R package version 1.4.0, <https://packages.tesselle.org/arkhe/>.
A BibTeX entry for LaTeX users is
@Manual{,
author = {Nicolas Frerebeau},
title = {{arkhe: Tools for Cleaning Rectangular Data}},
year = {2023},
organization = {Université Bordeaux Montaigne},
address = {Pessac, France},
note = {R package version 1.4.0},
url = {https://packages.tesselle.org/arkhe/},
doi = {10.5281/zenodo.3526659},
}
This package is a part of the tesselle project
<https://www.tesselle.org>.
Installation
You can install the released version of arkhe from CRAN with:
install.packages("arkhe")
And the development version from GitHub with:
# install.packages("remotes")
remotes::install_github("tesselle/arkhe")
Usage
## Load the package
library(arkhe)
## Create a matrix
X <- matrix(sample(1:10, 25, TRUE), nrow = 5, ncol = 5)
## Add NA
k <- sample(1:25, 3, FALSE)
X[k] <- NA
X
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 9 10 10 4 9
#> [2,] 1 6 6 10 4
#> [3,] NA 3 NA 3 5
#> [4,] 3 10 2 8 NA
#> [5,] 4 9 3 9 3
## Count missing values in rows
count(X, f = is.na, margin = 1)
#> [1] 0 0 2 1 0
## Count non-missing values in columns
count(X, f = is.na, margin = 2, negate = TRUE)
#> [1] 4 5 4 5 4
## Find row with NA
detect(X, f = is.na, margin = 1)
#> [1] FALSE FALSE TRUE TRUE FALSE
## Find column without any NA
detect(X, f = is.na, margin = 2, negate = TRUE, all = TRUE)
#> [1] FALSE TRUE FALSE TRUE FALSE
## Remove row with any NA
discard(X, f = is.na, margin = 1, all = FALSE)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 9 10 10 4 9
#> [2,] 1 6 6 10 4
#> [3,] 4 9 3 9 3
## Remove column with any NA
discard(X, f = is.na, margin = 2, all = FALSE)
#> [,1] [,2]
#> [1,] 10 4
#> [2,] 6 10
#> [3,] 3 3
#> [4,] 10 8
#> [5,] 9 9
## Replace NA with zeros
replace_NA(X, value = 0)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 9 10 10 4 9
#> [2,] 1 6 6 10 4
#> [3,] 0 3 0 3 5
#> [4,] 3 10 2 8 0
#> [5,] 4 9 3 9 3
Contributing
Please note that the arkhe project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.