## Here's a simple example of a model of the form, y = a + bx + error,
## with 10 observations in each of 10 groups, and with both the intercept
## and the slope varying by group. First we set up the model and data.
##
# group <- rep(1:10, rep(10,10))
# group2 <- rep(1:10, 10)
# mu.a <- 0
# sigma.a <- 2
# mu.b <- 3
# sigma.b <- 4
# rho <- 0.56
# Sigma.ab <- array (c(sigma.a^2, rho*sigma.a*sigma.b,
# rho*sigma.a*sigma.b, sigma.b^2), c(2,2))
# sigma.y <- 1
# ab <- mvrnorm (10, c(mu.a,mu.b), Sigma.ab)
# a <- ab[,1]
# b <- ab[,2]
# d <- rnorm(10)
#
# x <- rnorm (100)
# y1 <- rnorm (100, a[group] + b*x, sigma.y)
# y2 <- rbinom(100, 1, prob=invlogit(a[group] + b*x))
# y3 <- rnorm (100, a[group] + b[group]*x + d[group2], sigma.y)
# y4 <- rbinom(100, 1, prob=invlogit(a[group] + b*x + d[group2]))
#
##
## Then fit and display a simple varying-intercept model:
#
# M1 <- lmer (y1 ~ x + (1|group))
# display (M1)
# M1.sim <- mcsamp (M1)
# print (M1.sim)
# plot (M1.sim)
##
## Then the full varying-intercept, varying-slope model:
##
# M2 <- lmer (y1 ~ x + (1 + x |group))
# display (M2)
# M2.sim <- mcsamp (M2)
# print (M2.sim)
# plot (M2.sim)
##
## Then the full varying-intercept, logit model:
##
# M3 <- lmer (y2 ~ x + (1|group), family=binomial(link="logit"))
# display (M3)
# M3.sim <- mcsamp (M3)
# print (M3.sim)
# plot (M3.sim)
##
## Then the full varying-intercept, varying-slope logit model:
##
# M4 <- lmer (y2 ~ x + (1|group) + (0+x |group),
# family=binomial(link="logit"))
# display (M4)
# M4.sim <- mcsamp (M4)
# print (M4.sim)
# plot (M4.sim)
#
##
## Then non-nested varying-intercept, varying-slop model:
##
# M5 <- lmer (y3 ~ x + (1 + x |group) + (1|group2))
# display(M5)
# M5.sim <- mcsamp (M5)
# print (M5.sim)
# plot (M5.sim)
Run the code above in your browser using DataLab