#Examples of "sim"
set.seed (1)
J <- 15
n <- J*(J+1)/2
group <- rep (1:J, 1:J)
mu.a <- 5
sigma.a <- 2
a <- rnorm (J, mu.a, sigma.a)
b <- -3
x <- rnorm (n, 2, 1)
sigma.y <- 6
y <- rnorm (n, a[group] + b*x, sigma.y)
u <- runif (J, 0, 3)
y123.dat <- cbind (y, x, group)
# Linear regression
x1 <- y123.dat[,2]
y1 <- y123.dat[,1]
M1 <- lm (y1 ~ x1)
display(M1)
M1.sim <- sim(M1)
coef.M1.sim <- coef(M1.sim)
sigma.M1.sim <- sigma.hat(M1.sim)
## to get the uncertainty for the simulated estimates
apply(coef(M1.sim), 2, quantile)
quantile(sigma.hat(M1.sim))
# Logistic regression
u.data <- cbind (1:J, u)
dimnames(u.data)[[2]] <- c("group", "u")
u.dat <- as.data.frame (u.data)
y <- rbinom (n, 1, invlogit (a[group] + b*x))
M2 <- glm (y ~ x, family=binomial(link="logit"))
display(M2)
M2.sim <- sim (M2)
coef.M2.sim <- coef(M2.sim)
sigma.M2.sim <- sigma.hat(M2.sim)
# Ordered Logistic regression
house.plr <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
display(house.plr)
M.plr <- sim(house.plr)
coef.sim <- coef(M.plr, slot="coef")
zeta.sim <- coef(M.plr, slot="zeta")
coefall.sim <- coef(M.plr)
# Using lmer:
# Example 1
E1 <- lmer (y ~ x + (1 | group))
display(E1)
E1.sim <- sim (E1)
coef.E1.sim <- coef(E1.sim)
fixef.E1.sim <- fixef(E1.sim)
ranef.E1.sim <- ranef(E1.sim)
sigma.E1.sim <- sigma.hat(E1.sim)
# Example 2
u.full <- u[group]
E2 <- lmer (y ~ x + u.full + (1 | group))
display(E2)
E2.sim <- sim (E2)
coef.E2.sim <- coef(E2.sim)
fixef.E2.sim <- fixef(E2.sim)
ranef.E2.sim <- ranef(E2.sim)
sigma.E2.sim <- sigma.hat(E2.sim)
# Example 3
y <- rbinom (n, 1, invlogit (a[group] + b*x))
E3 <- glmer (y ~ x + (1 | group), family=binomial(link="logit"))
display(E3)
E3.sim <- sim (E3)
coef.E3.sim <- coef(E3.sim)
fixef.E3.sim <- fixef(E3.sim)
ranef.E3.sim <- ranef(E3.sim)
sigma.E3.sim <- sigma.hat(E3.sim)
Run the code above in your browser using DataLab