Package: aroma.affymetrix
Class AffinePlm
Object
~~|
~~+--
ParametersInterface
~~~~~~~|
~~~~~~~+--
Model
~~~~~~~~~~~~|
~~~~~~~~~~~~+--
UnitModel
~~~~~~~~~~~~~~~~~|
~~~~~~~~~~~~~~~~~+--
MultiArrayUnitModel
~~~~~~~~~~~~~~~~~~~~~~|
~~~~~~~~~~~~~~~~~~~~~~+--
ProbeLevelModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~|
~~~~~~~~~~~~~~~~~~~~~~~~~~~+--
AffinePlm
Directly known subclasses:
AffineCnPlm, AffineSnpPlm
public abstract static class AffinePlm
extends ProbeLevelModel
This class represents affine model in Bengtsson & Hossjer (2006).
AffinePlm(..., background=TRUE)
Methods:
getProbeAffinityFile | - |
Methods inherited from ProbeLevelModel:
calculateResidualSet, calculateWeights, fit, getAsteriskTags, getCalculateResidualsFunction, getChipEffectSet, getProbeAffinityFile, getResidualSet, getRootPath, getWeightsSet
Methods inherited from MultiArrayUnitModel:
getListOfPriors, setListOfPriors, validate
Methods inherited from UnitModel:
findUnitsTodo, getAsteriskTags, getFitSingleCellUnitFunction, getParameters
Methods inherited from Model:
as.character, fit, getAlias, getAsteriskTags, getDataSet, getFullName, getName, getPath, getRootPath, getTags, setAlias, setTags
Methods inherited from ParametersInterface:
getParameterSets, getParameters, getParametersAsString
Methods inherited from Object:
$, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clearLookupCache, clone, detach, equals, extend, finalize, getEnvironment, getFieldModifier, getFieldModifiers, getFields, getInstantiationTime, getStaticInstance, hasField, hashCode, ll, load, names, objectSize, print, save, asThis
For a single unit group, the affine model is:
$$y_{ik} = a + \theta_i \phi_k + \varepsilon_{ik}$$
where \(a\) is an offset common to all probe signals, \(\theta_i\) are the chip effects for arrays \(i=1,...,I\), and \(\phi_k\) are the probe affinities for probes \(k=1,...,K\). The \(\varepsilon_{ik}\) are zero-mean noise with equal variance. The model is constrained such that \(\prod_k \phi_k = 1\).
Note that with the additional constraint \(a=0\) (see arguments above),
the above model is very similar to MbeiPlm
. The differences in
parameter estimates is due to difference is assumptions about the
error structure, which in turn affects how the model is estimated.
Henrik Bengtsson
Bengtsson & Hossjer (2006).