Package: aroma.affymetrix
Class ProbeLevelModel
Object
~~|
~~+--
ParametersInterface
~~~~~~~|
~~~~~~~+--
Model
~~~~~~~~~~~~|
~~~~~~~~~~~~+--
UnitModel
~~~~~~~~~~~~~~~~~|
~~~~~~~~~~~~~~~~~+--
MultiArrayUnitModel
~~~~~~~~~~~~~~~~~~~~~~|
~~~~~~~~~~~~~~~~~~~~~~+--
ProbeLevelModel
Directly known subclasses:
AffineCnPlm, AffinePlm, AffineSnpPlm, AvgCnPlm, AvgPlm, AvgSnpPlm, ExonRmaPlm, HetLogAddCnPlm, HetLogAddPlm, HetLogAddSnpPlm, MbeiCnPlm, MbeiPlm, MbeiSnpPlm, RmaCnPlm, RmaPlm, RmaSnpPlm
public abstract static class ProbeLevelModel
extends MultiArrayUnitModel
This abstract class represents a probe-level model (PLM) as defined by the affyPLM package: "A [...] PLM is a model that is fit to probe-intensity data. More specifically, it is where we fit a model with probe level and chip level parameters on a probeset by probeset basis", where the more general case for a probeset is a unit group in Affymetrix CDF terms.
ProbeLevelModel(..., standardize=TRUE)
Arguments passed to MultiArrayUnitModel
.
If TRUE
, chip-effect and probe-affinity estimates are
rescaled such that the product of the probe affinities is one.
Methods:
fit | - | |
getChipEffectSet | - | |
getProbeAffinityFile | - | |
getResidualSet | - | |
getWeightsSet | - |
Methods inherited from MultiArrayUnitModel:
getListOfPriors, setListOfPriors, validate
Methods inherited from UnitModel:
findUnitsTodo, getAsteriskTags, getFitSingleCellUnitFunction, getParameters
Methods inherited from Model:
as.character, fit, getAlias, getAsteriskTags, getDataSet, getFullName, getName, getPath, getRootPath, getTags, setAlias, setTags
Methods inherited from ParametersInterface:
getParameterSets, getParameters, getParametersAsString
Methods inherited from Object:
$, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clearLookupCache, clone, detach, equals, extend, finalize, getEnvironment, getFieldModifier, getFieldModifiers, getFields, getInstantiationTime, getStaticInstance, hasField, hashCode, ll, load, names, objectSize, print, save, asThis
Henrik Bengtsson
In order to minimize the risk for mistakes, but also to be able compare results from different PLMs, all PLM subclasses must meet the following criteria:
All parameter estimates must be (stored and returned) on the
intensity scale, e.g. log-additive models such as RmaPlm
have to transform the parameters on the log-scale to the intensity
scale.
The probe-affinity estimates \(\phi_k\) for a unit group must be constrained such that \(\prod_k \phi_k = 1\), or equivalently if \(\phi_k > 0\),\(\sum_k \log(\phi_k) = 0\).
Note that the above probe-affinity constraint guarantees that the estimated chip effects across models are on the same scale.
For more details on probe-level models, please see the preprocessCore package.