Learn R Programming

artfima (version 1.5)

predict.artfima: Predict method for artfima

Description

The optimal minimum mean square error forecast and its standard deviation for lags 1, 2, ..., n.ahead is computed at forecast origin starting at the end of the observed series used in fitting. The exact algorithm discussed in McLeod, Yu and Krougly is used.

Usage

"predict"(object, n.ahead=10, ...)

Arguments

object
object of class "artfima"
n.ahead
number of steps ahead to forecast
...
optional arguments

Value

Forecasts
Description of 'comp1'
SDForecasts
Description of 'comp2'

References

McLeod, A.I., Yu, Hao and Krougly, Z. (2007). Algorithms for Linear Time Series Analysis: With R Package. Journal of Statistical Software 23/5 1-26.

See Also

predict.Arima

Examples

Run this code
ans <- artfima(seriesa, likAlg="Whittle")
predict(ans)
#compare forecasts from ARTFIMA etc.
  ## Not run: 
# ML <- 10
# ans <- artfima(seriesa)
# Ftfd <- predict(ans, n.ahead=10)$Forecasts 
# ans <- artfima(seriesa, glp="ARIMA", arimaOrder=c(1,0,1))
# Farma11 <- predict(ans, n.ahead=10)$Forecasts 
# ans <- artfima(seriesa, glp="ARFIMA")
# Ffd <- predict(ans, n.ahead=10)$Forecasts
# #arima(0,1,1)
# ans <- arima(seriesa, order=c(0,1,1))
# fEWMA <- predict(ans, n.ahead=10)$pred
# yobs<-seriesa[188:197]
# xobs<-188:197
# y <- matrix(c(yobs,Ffd,Ftfd,Farma11,fEWMA), ncol=5)
# colnames(y)<-c("obs", "FD", "TFD", "ARMA11","FEWMA")
# x <- 197+1:ML
# x <- matrix(c(xobs, rep(x, 4)), ncol=5)
# plot(x, y, type="n", col=c("black", "red", "blue", "magenta"),
#      xlab="t", ylab=expression(z[t]))
# x <- 197+1:ML
# points(xobs, yobs, type="o", col="black")
# points(x, Ffd, type="o", col="red")
# points(x, Ftfd, type="o", col="blue")
# points(x, Farma11, type="o", col="brown")
# points(x, fEWMA, type="o", col="magenta")
# legend(200, 18.1, legend=c("observed", "EWMA", "FD", "TFD", "ARMA"),
#        col=c("black", "magenta", "red", "blue", "brown"),
#        lty=c(rep(1,5)))
#   ## End(Not run)

Run the code above in your browser using DataLab