data("Income")
### calculate all-confidence
itemsets <- apriori(Income, parameter = list(target = "freq"))
quality(itemsets) <- cbind(quality(itemsets),
allConfonfidence = allConfidence(itemsets))
summary(itemsets)
### calculate hyperlift for the 0.9 quantile
rules <- apriori(Income)
quality(rules) <- cbind(quality(rules),
hyperLift = hyperLift(rules, Income, d = 0.9))
inspect(SORT(rules, by = "hyperLift")[1:5])
### calculate hyper-confidence and discard all rules with
### a confidence level < 1\%
quality(rules) <- cbind(quality(rules),
hyperConfidence = hyperConfidence(rules, Income))
rulesHConf <- rules[quality(rules)$hyperConfidence >= 0.99]
inspect(rulesHConf[1:10])
Run the code above in your browser using DataLab