Learn R Programming

arules (version 1.7-6)

abbreviate: Abbreviate item labels in transactions, itemMatrix and associations

Description

Provides the generic function and the methods to abbreviate long item labels in transactions, associations (rules and itemsets) and transaction ID lists. Note that abbreviate() is not a generic and this arules defines a generic with the base::abbreviate() as the default.

Usage

abbreviate(names.arg, ...)

# S4 method for itemMatrix abbreviate(names.arg, minlength = 4, ..., method = "both.sides")

# S4 method for transactions abbreviate(names.arg, minlength = 4, ..., method = "both.sides")

# S4 method for rules abbreviate(names.arg, minlength = 4, ..., method = "both.sides")

# S4 method for itemsets abbreviate(names.arg, minlength = 4, ..., method = "both.sides")

# S4 method for tidLists abbreviate(names.arg, minlength = 4, ..., method = "both.sides")

Arguments

names.arg

an object of class transactions, itemMatrix, itemsets, rules or tidLists.

...

further arguments passed on to the default abbreviation function.

minlength

number of characters allowed in abbreviation

method

apply to level and value (both.sides)

Author

Sudheer Chelluboina and Michael Hahsler based on code by Martin Vodenicharov.

See Also

base::abbreviate()

Other associations functions: associations-class, c(), duplicated(), extract, inspect(), is.closed(), is.generator(), is.maximal(), is.redundant(), is.significant(), is.superset(), itemsets-class, match(), rules-class, sample(), sets, size(), sort(), unique()

Other itemMatrix and transactions functions: crossTable(), c(), duplicated(), extract, hierarchy, image(), inspect(), is.superset(), itemFrequencyPlot(), itemFrequency(), itemMatrix-class, match(), merge(), random.transactions(), sample(), sets, size(), supportingTransactions(), tidLists-class, transactions-class, unique()

Examples

Run this code

data(Adult)
inspect(head(Adult, 1))

Adult_abbr <- abbreviate(Adult, 15)
inspect(head(Adult_abbr, 1))

Run the code above in your browser using DataLab