## Example 1: SunBai data
data(SunBai)
SunBai
## weights are stored in transactionInfo
transactionInfo(SunBai)
## mine weighted support itemsets using transaction support in SunBai
s <- weclat(SunBai,
parameter = list(support = 0.3),
control = list(verbose = TRUE)
)
inspect(sort(s))
## create rules using weighted support (satisfying a minimum
## weighted confidence of 90%).
r <- ruleInduction(s, confidence = .9)
inspect(r)
## Example 2: Find association rules in weighted data
trans <- list(
c("A", "B", "C", "D", "E"),
c("C", "F", "G"),
c("A", "B"),
c("A"),
c("C", "F", "G", "H"),
c("A", "G", "H")
)
weight <- c(5, 10, 6, 7, 5, 1)
## convert list to transactions
trans <- transactions(trans)
## add weight information
transactionInfo(trans) <- data.frame(weight = weight)
inspect(trans)
## mine weighed support itemsets
s <- weclat(trans,
parameter = list(support = 0.3),
control = list(verbose = TRUE)
)
inspect(sort(s))
## create association rules
r <- ruleInduction(s, confidence = .5)
inspect(r)
Run the code above in your browser using DataLab