Learn R Programming

R package arulesCBA - Classification Based on Association Rules

The R package arulesCBA (Hahsler et al, 2020) is an extension of the package arules to perform association rule-based classification. The package provides the infrastructure for class association rules and implements associative classifiers based on the following algorithms:

  • CBA: Classification Based on Association Rules (Liu et al, 1998).
  • CMAR: Classification based on Multiple Association Rule (Li, Han and Pei, 2001) via LUCS-KDD Software Library.
  • CPAR: Classification based on Predictive Association Rules (Yin and Han, 2003) via LUCS-KDD Software Library.
  • C4.5: Rules extracted from a C4.5 decision tree (Quinlan, 1993) via J48 in R/Weka.
  • FOIL: First-Order Inductive Learner (Yin and Han, 2003).
  • PART: Rules from Partial Decision Trees (Frank and Witten, 1998) via R/Weka.
  • PRM: Predictive Rule Mining (Yin and Han, 2003) via LUCS-KDD Software Library.
  • RCAR: Regularized Class Association Rules using Logistic Regression (Azmi et al, 2019).
  • RIPPER: Repeated Incremental Pruning to Produce Error Reduction (Cohen, 1995) via R/Weka.

The package also provides the infrastructure for associative classification (supervised discetization, mining class association rules (CARs)), and implements various association rule-based classification strategies (first match, majority voting, weighted voting, etc.).

Installation

Stable CRAN version: Install from within R with

install.packages("arulesCBA")

Current development version: Install from r-universe.

install.packages("arulesCBA",
    repos = c("https://mhahsler.r-universe.dev". "https://cloud.r-project.org/"))

Usage

library("arulesCBA")
data("iris")

Learn a classifier.

classifier <- CBA(Species ~ ., data = iris)
classifier
## CBA Classifier Object
## Formula: Species ~ .
## Number of rules: 6
## Default Class: versicolor
## Classification method: first  
## Description: CBA algorithm (Liu et al., 1998)

Inspect the rulebase.

inspect(classifier$rules, linebreak = TRUE)
##     lhs                            rhs                  support confidence coverage lift count size coveredTransactions totalErrors
## [1] {Petal.Length=[-Inf,2.45)}  => {Species=setosa}        0.33       1.00     0.33  3.0    50    2                  50          50
## [2] {Sepal.Length=[6.15, Inf],                                                                                                     
##      Petal.Width=[1.75, Inf]}   => {Species=virginica}     0.25       1.00     0.25  3.0    37    3                  37          13
## [3] {Sepal.Length=[5.55,6.15),                                                                                                     
##      Petal.Length=[2.45,4.75)}  => {Species=versicolor}    0.14       1.00     0.14  3.0    21    3                  21          13
## [4] {Sepal.Width=[-Inf,2.95),                                                                                                      
##      Petal.Width=[1.75, Inf]}   => {Species=virginica}     0.11       1.00     0.11  3.0    17    3                   5           8
## [5] {Petal.Width=[1.75, Inf]}   => {Species=virginica}     0.30       0.98     0.31  2.9    45    2                   4           6
## [6] {}                          => {Species=versicolor}    0.33       0.33     1.00  1.0   150    1                  33           6

Make predictions for the first few instances of iris.

predict(classifier, head(iris))
## [1] setosa setosa setosa setosa setosa setosa
## Levels: setosa versicolor virginica

Cite This Package AS

References

  • M. Azmi, G.C. Runger, and A. Berrado (2019). Interpretable regularized class association rules algorithm for classification in a categorical data space. Information Sciences, Volume 483, May 2019, pp. 313-331.
  • W. W. Cohen (1995). Fast effective rule induction. In A. Prieditis and S. Russell (eds.), Proceedings of the 12th International Conference on Machine Learning, pp. 115-123. Morgan Kaufmann. ISBN 1-55860-377-8.
  • E. Frank and I. H. Witten (1998). Generating accurate rule sets without global optimization. In J. Shavlik (ed.), Machine Learning: Proceedings of the Fifteenth International Conference, Morgan Kaufmann Publishers: San Francisco, CA.
  • W. Li, J. Han and J. Pei (2001). CMAR: accurate and efficient classification based on multiple class-association rules, Proceedings 2001 IEEE International Conference on Data Mining, San Jose, CA, USA, pp. 369-376.
  • B. Liu, W. Hsu and Y. Ma (1998). Integrating Classification and Association Rule Mining. KDD’98 Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York, AAAI, pp. 80-86.
  • R. Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA.
  • X. Yin and J. Han (2003). CPAR: Classification based on Predictive Association Rules, Proceedings of the 2003 SIAM International Conference on Data Minin, pp. 331-235.

Copy Link

Version

Install

install.packages('arulesCBA')

Monthly Downloads

2,151

Version

1.2.7

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

May 15th, 2024

Functions in arulesCBA (1.2.7)

transactions2DF

Convert Transactions to a Data.Frame
prepareTransactions

Prepare Data for Associative Classification
discretizeDF.supervised

Supervised Methods to Convert Continuous Variables into Categorical Variables
predict.CBA

Model Prediction for Classifiers Based on Association Rules
mineCARs

Mine Class Association Rules
CBA_ruleset

Constructor for Objects for Classifiers Based on Association Rules
FOIL

Use FOIL to learn a rule set for classification
RCAR

Regularized Class Association Rules for Multi-class Problems (RCAR+)
RWeka_CBA

CBA classifiers based on rule-based classifiers in RWeka
Lymphography

The Lymphography Domain Data Set (UCI)
CBA

Classification Based on Association Rules Algorithm (CBA)
CBA_helpers

Helper Functions For Dealing with Classes
LUCS_KDD_CBA

Interface to the LUCS-KDD Implementations of CMAR, PRM and CPAR
arulesCBA-package

arulesCBA: Classification Based on Association Rules
Mushroom

The Mushroom Data Set (UCI)