McR.eval
provides both the McClain & Rao evaluator (W/B) (McClain and Rao 1975) and the PARTANA ratio (Roberts 2005); Cindex.eval
= The C-index (Hubert and Levin 1976); morisita.eval
= the Morisita index (adapted from Horn 1966); biserial.eval
= point biserial correlation evaluator (Brogden 1949).McR.eval(cat, dist, method = "McR")
Cindex.eval(cat, Y, index = "steinhaus")
morisita.eval(cat, Y)
biserial.eval(cat, dist)
class="dist"
.McR.eval
. Options are method="partana"
and method="McR"
.get.dist
is allowedclass="eval"
. Printed will be the evaluator score for a classification solution; invisible
objects will vary with method.McR.eval
is essentially the partana
function from library labdsv
with only a few minor adjustments.get.dist
library(vegan)
data(dune)
data(dune.env)
McR.eval(dune.env[,3],get.dist(dune,"steinhaus"))
Cindex.eval(dune.env[,3],dune)
biserial.eval(dune.env[,3],get.dist(dune,"steinhaus"))
Run the code above in your browser using DataLab