McR.eval provides both the McClain & Rao evaluator (W/B) (McClain and Rao 1975) and the PARTANA ratio (Roberts 2005); Cindex.eval = The C-index (Hubert and Levin 1976); morisita.eval = the Morisita index (adapted from Horn 1966); biserial.eval = point biserial correlation evaluator (Brogden 1949).McR.eval(cat, dist, method = "McR")
Cindex.eval(cat, Y, index = "steinhaus")
morisita.eval(cat, Y)
biserial.eval(cat, dist)class="dist".McR.eval. Options are method="partana" and method="McR".get.dist is allowedclass="eval". Printed will be the evaluator score for a classification solution; invisible objects will vary with method.McR.eval is essentially the partana function from library labdsv with only a few minor adjustments.get.distlibrary(vegan)
data(dune)
data(dune.env)
McR.eval(dune.env[,3],get.dist(dune,"steinhaus"))
Cindex.eval(dune.env[,3],dune)
biserial.eval(dune.env[,3],get.dist(dune,"steinhaus"))Run the code above in your browser using DataLab