Learn R Programming

asbio (version 1.11)

joint.ci.bonf: Calculates joint confidence intervals for parameters in linear models using a Bonferroni procedure.

Description

Creates widened confidence intervals to allow joint consideration of parameter confidence intervals.

Usage

joint.ci.bonf(model, conf = 0.95)

Value

Returns a dataframe with the upper and lower confidence bounds for each parameter in a linear model.

Arguments

model

A linear model created by lm

conf

level of confidence 1 - P(type I error)

Author

Ken Aho

Details

As with all Bonferroni-based methods for joint confidence the resulting intervals are exceedingly conservative and thus are prone to type II error.

References

Kutner, M. H., Nachtsheim, C. J., Neter, J., and W. Li. (2005) Applied Linear Statistical Models, 5th edition. McGraw-Hill, Boston.

See Also

Examples

Run this code
Soil.C<-c(13,20,10,11,2,25,30,25,23)
Soil.N<-c(1.2,2,1.5,1,0.3,2,3,2.7,2.5)
Slope<-c(15,14,16,12,10,18,25,24,20)
Aspect<-c(45,120,100,56,5,20,5,15,15)
Y<-as.vector(c(20,30,10,15,5,45,60,55,45))
model<-lm(Y~Soil.C+Soil.N+Slope+Aspect)
joint.ci.bonf(model)

Run the code above in your browser using DataLab