Learn R Programming

asbio (version 1.5-5)

ConDis.matrix: Calculation and display of concordant and discordant pairs

Description

Calculates whether pairs of observations from two vectors are concordant discordant or neither. These are displayed in the lower diagonal of a symmetric output matrix as 1, -1 or 0.

Usage

ConDis.matrix(Y1, Y2)

Arguments

Y1

A vector of quantitative data.

Y2

A vector of quantitative data. Observations are assumed to be paired with respective observations from Y1.

Value

A matrix is returned. Elements in the lower triangle indicate whether observations are concordant (element = 1), discordant (element = -1) or neither (element = 0).

Details

Consider all possible combinations of \((Y_{1i}, Y_{ij})\) and \((Y_{2i}, Y_{ij})\) where \(1<=i<j<=n\). A pair is concordant if \(Y_{1i} > Y_{1j}\) and \(Y_{2i} > Y_{2j}\) or if \(Y_{1i} < Y_{1j}\) and \(Y_{2i} < Y_{2j}\). Conversely, a pair is discordant if \(Y_{1i} < Y_{1j}\) and \(Y_{2i} > Y_{2j}\) or if \(Y_{1i} > Y_{1j}\) and \(Y_2i < Y_2j\). This information has a number of important uses including calculation of Kendall's \(\tau\).

References

Hollander, M., and Wolfe, D. A. (1999) Nonparametric statistical methods. New York: John Wiley & Sons.

Liebetrau, A. M. (1983) Measures of association. Sage Publications, Newbury Park, CA.

Sokal, R. R., and Rohlf, F. J. (1995) Biometry. W. H. Freeman and Co., New York.

See Also

cor

Examples

Run this code
# NOT RUN {
#Crab data from Sokal and Rohlf (1998)
crab<-data.frame(gill.wt=c(159,179,100,45,384,230,100,320,80,220,320,210),
body.wt=c(14.4,15.2,11.3,2.5,22.7,14.9,1.41,15.81,4.19,15.39,17.25,9.52))
attach(crab)
crabm<-ConDis.matrix(gill.wt,body.wt)
crabm
# }

Run the code above in your browser using DataLab