# NOT RUN {
if(requireNamespace("asteRiskData", quietly = TRUE)) {
# The following orbital parameters correspond to an object with NORAD catalogue
# number 24208 (Italsat 2) the 26th of June, 2006 at 00:58:29.34 UTC.
n0 <- 1.007781*((2*pi)/(1440)) # Multiplication by 2pi/1440 to convert to radians/min
e0 <- 0.002664 # mean eccentricity at epoch
i0 <- 3.8536*pi/180 # mean inclination at epoch in radians
M0 <- 48.3*pi/180 # mean anomaly at epoch in radians
omega0 <- 311.0977*pi/180 # mean argument of perigee at epoch in radians
OMEGA0 <- 80.0121*pi/180 # mean longitude of ascending node at epoch in radians
Bstar <- 1e-04 # drag coefficient
epochDateTime <- "2006-06-26 00:58:29.34"
# Let<U+00B4>s calculate the position and velocity of the satellite 1 day later
state_1day_TEME <- sgdp4(n0=n0, e0=e0, i0=i0, M0=M0, omega0=omega0, OMEGA0=OMEGA0,
Bstar=Bstar, initialDateTime=epochDateTime, targetTime=1440)
# We can now convert the results in TEME frame to GCRF frame, previously
# multiplying by 1000 to convert the km output of sgdp4 to m
state_1day_GCRF <- TEMEtoGCRF(state_1day_TEME$position*1000,
state_1day_TEME$velocity*1000,
"2006-06-27 00:58:29.34")
# Finally, we convert the results in GCRF frame to geodetic latitude, longitude
# and altitude
state_1day_geodetic <- GCRFtoLATLON(state_1day_GCRF$position, "2006-06-27 00:58:29.34")
}
# }
Run the code above in your browser using DataLab