Learn R Programming

astsa (version 1.9)

mvspec: Univariate and Multivariate Spectral Estimation

Description

This is spec.pgram with a few changes in the defaults and written so you can easily extract the estimate of the multivariate spectral matrix as fxx. The bandwidth calculation has been changed to the more practical definition given in the text. Can be used to replace spec.pgram for univariate series.

Usage

mvspec(x, spans = NULL, kernel = NULL, taper = 0, pad = 0, 
         fast = TRUE, demean = FALSE, detrend = TRUE, 
         plot = TRUE, log='n', na.action = na.fail, ...)

Arguments

x

univariate or multivariate time series (i.e., the p columns of x are time series)

spans

specify smoothing; same as spec.pgram

kernel

specify kernel; same as spec.pgram

taper

specify taper; same as spec.pgram with different default

pad

specify padding; same as spec.pgram

fast

specify use of FFT; same as spec.pgram

demean

if TRUE, series is demeaned first; same as spec.pgram

detrend

if TRUE, series is detrended first; same as spec.pgram

log

same as spec.pgram but default is 'no'

plot

plot the estimate; same as spec.pgram

na.action

same as spec.pgram

additional arguments; same as spec.pgram

Value

An object of class "spec", which is a list containing at least the following components:

fxx

spectral matrix estimates; an array of dimensions dim = c(p,p,nfreq)

freq

vector of frequencies at which the spectral density is estimated.

spec

vector (for univariate series) or matrix (for multivariate series) of estimates of the spectral density at frequencies corresponding to freq.

details

matrix with columns: frequency, period, spectral ordinate(s)

coh

NULL for univariate series. For multivariate time series, a matrix containing the squared coherency between different series. Column i + (j - 1) * (j - 2)/2 of coh contains the squared coherency between columns i and j of x, where i < j.

phase

NULL for univariate series. For multivariate time series a matrix containing the cross-spectrum phase between different series. The format is the same as coh.

Lh

Number of frequencies (approximate) used in the band, as defined in Chapter 4.

n.used

Sample length used for the FFT

series

The name of the time series.

snames

For multivariate input, the names of the component series.

method

The method used to calculate the spectrum.

The results are returned invisibly if plot is true. %% ~Describe the value returned %% If it is a LIST, use %% \item{comp1 }{Description of 'comp1'} %% \item{comp2 }{Description of 'comp2'} %% ...

Details

This is spec.pgram with a few changes in the defaults and written so you can easily extract the estimate of the multivariate spectral matrix as fxx. The default for the plot is NOT to plot on a log scale and the graphic will have a grid. The bandwidth calculation has been changed to the more practical definition given in the text, \((L_h/n.used)*frequency(x)\). Although meant to be used to easily obtain multivariate spectral estimates, this script can be used for univariate time series. Note that the script does not taper by default (taper=0); this forces the user to do "conscious tapering".

References

http://www.stat.pitt.edu/stoffer/tsa4/ and http://www.stat.pitt.edu/stoffer/tsda/

Examples

Run this code
# NOT RUN {
# univariate example
plot(co2)   # co2 is an R data set
mvspec(co2, spans=c(5,5), taper=.5)

# multivariate example
ts.plot(mdeaths, fdeaths, col=1:2)   # an R data set, male/female monthly deaths ...
dog = mvspec(cbind(mdeaths,fdeaths), spans=c(3,3), taper=.1)
dog$fxx        # look a spectral matrix estimates
dog$bandwidth  # bandwidth with time unit = year
dog$bandwidth/frequency(mdeaths)  # ... with time unit = month
plot(dog, plot.type="coherency")  # plot of squared coherency

# analysis with some details printed
mvspec(soi, spans=c(7,7), taper=.5)$details[1:45,]
# }

Run the code above in your browser using DataLab