Total variation and total generalized variation are classical energy minimizing methods for image denoising.
TV_denoising(datanoisy, alpha, iter = 1000, tolmean = 1e-06,
tolsup = 1e-04, scale = 1, verbose=FALSE)
TGV_denoising(datanoisy, alpha, beta, iter = 1000, tolmean = 1e-06,
tolsup = 1e-04, scale = 1, verbose=FALSE)
TV_denoising_colour(datanoisy, alpha, iter = 1000, tolmean = 1e-06,
tolsup = 1e-04, scale = 1, verbose=FALSE)
TGV_denoising_colour(datanoisy, alpha, beta, iter = 1000, tolmean = 1e-06,
tolsup = 1e-04, scale = 1, verbose=FALSE)
TV/TGV reconstructed image data (2D array)
matrix of noisy 2D image data. In case of TV_denoising_colour
and TGV_denoising_colour
and array with third dimension refering to
RGB channels.
TV regularization parameter.
additional TGV regularization parameter.
max. number of iterations
requested accuracy for mean image correction
requested accuracy for max (over pixel) image correction
image scale
report convergence diagnostics.
Joerg Polzehl, polzehl@wias-berlin.de, https://www.wias-berlin.de/people/polzehl/
Reimplementation of original matlab code by Kostas Papafitsoros (WIAS).
J. Polzehl, K. Papafitsoros, K. Tabelow (2020). Patch-Wise Adaptive Weights Smoothing in R, Journal of Statistical Software, 95(6), 1-27. doi:10.18637/jss.v095.i06.
Rudin, L.I., Osher, S. and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Phys. D, 60, 259-268. DOI: 10.1016/0167-2789(92)90242-F.
Bredies, K., Kunisch, K. and Pock, T. (2010). Total Generalized Variation. SIAM J. Imaging Sci., 3, 492-526. DOI:10.1137/090769521.