Complementary functions that may help with handling parameters and routine operations.
Alencar Xavier
emGWA(y,gen)
# Simple MLM for association analysis
markov(gen,chr=NULL)
# Markovian imputation of genotypes coded as 012
IMP(X)
# Imputes genotypes with SNP expectation (column average)
CNT(X)
# Recodes SNPs by centralizing columns in a matrix
GAU(X)
# Creates Gaussian kernel as exp(-Dist2/mean(Dist2))
GRM(X,Code012=FALSE)
# Creates additive kinship matrix VanRaden 2008
SPC(y,blk,row,col,rN=3,cN=1)
# Spatial covariate
SPM(blk,row,col,rN=3,cN=1)
# Spatial design matrix
SibZ(id,p1,p2)
# Pedigree design matrix compatible to regression methods
Hmat(ped,gen=NULL)
# Kinship combining pedigree and genomics
EigenGRM(X, centralizeZ = TRUE, cores = 1)
# GRM using Eigen library
EigenARC(X, centralizeZ = TRUE, cores = 1)
# ArcCosine kernel
EigenGAU(X, phi = 1.0, cores = 1)
# Gaussian kernel using Eigen library
EigenCNT(X, cores = 1)
# Center SNPs without missing Eigen library
EigenEVD(A, cores = 1)
# Eigendecomposition from Eigen library
EigenBDCSVD(X, cores = 1)
# BDC single value composition from Eigen
EigenJacobiSVD(X, cores = 1)
# Jacobi single value composition from Eigen
EigenAcc(X1, X2, h2 = 0.5, cores = 1)
# Deterministic accuracy X1 -> X2 via V
AccByC(X1, X2, h2 = 0.5, cores = 1)
# Deterministic accuracy X1 -> X2 via C
EigenArcZ(Zfndr, Zsamp, cores = 1)
# Reduced rank ArcCos kernel PCs with founder rotation
EigenGauZ(Zfndr, Zsamp, phi=1, cores = 1)
# Reduced rank Gaussian kernel PCs with founder rotation
K2X(K, MinEV = 1e-8, cores = 1)
# Reparametrize kernel to PCs to run regression models
SimY(Z,k=5,h2=0.5,GC=0.5,seed=123,unbalanced=FALSE,PercMiss=0,BlkMiss=FALSE)
# Simulate phenotypes
SimZ(ind=500,snp=500,chr=2,F2=TRUE,rec=0.01)
# Simulate genome
SimGC(k=50,...)
# Simulate genetic correlation matrix
MvSimY(Ufndr,Zfndr,Zsamp,GxY,GxL,H2plot,nLoc=20,Seed=123)
# Simulate phenotypes given founders