bicm: Bipartite Configuration Model.
bicm(graph, tol = 1e-08, max_steps = 200, progress = FALSE, ...)
matrix, a bipartite adjacency matrix of a graph
numeric, tolerance of algorithm
numeric, number of times to run loglikelihood_prime_bicm algorithm
Boolean: If txtProgressBar should be used to measure progress
optional arguments
matrix containing probabilities
The Bipartite Configuration Model (Saracco et. al. 2015, 2017) produces a matrix of edge specific probabilities which are used in sdsm to find the p-values of the edges in the bipartite projection. This R code is adapted from the python BiCM package by Matteo Bruno under the MIT license.
python bicm: Matteo Bruno, matteo.bruno<at>imtlucca.it, https://github.com/mat701/BiCM
bicm: Saracco, F., Straka, M. J., Clemente, R. D., Gabrielli, A., Caldarelli, G., & Squartini, T. (2017). Inferring monopartite projections of bipartite networks: An entropy-based approach. New Journal of Physics, 19(5), 053022. 10.1088/1367-2630/aa6b38
bicm: Saracco, F., Di Clemente, R., Gabrielli, A., & Squartini, T. (2015). Randomizing bipartite networks: The case of the World Trade Web. Scientific Reports, 5(1), 10595. 10.1038/srep10595