Learn R Programming

bark (version 1.0.5)

sim_Friedman1: Simulated Regression Problem Friedman 1

Description

The regression problem Friedman 1 as described in Friedman (1991) and Breiman (1996). Inputs are 10 independent variables uniformly distributed on the interval \([0,1]\), only 5 out of these 10 are actually used. Outputs are created according to the formula $$y = 10 \sin(\pi x1 x2) + 20 (x3 - 0.5)^2 + 10 x4 + 5 x5 + e$$ where e is \(N(0,sd^2)\).

Usage

sim_Friedman1(n, sd = 1)

Value

Returns a list with components

x

input values (independent variables)

y

output values (dependent variable)

Arguments

n

number of data points to create

sd

standard deviation of noise, with default value 1

References

Breiman, Leo (1996) Bagging predictors. Machine Learning 24, pages 123-140.
Friedman, Jerome H. (1991) Multivariate adaptive regression splines. The Annals of Statistics 19 (1), pages 1-67.

See Also

Other bark simulation functions: sim_Friedman2(), sim_Friedman3(), sim_circle()

Other bark functions: bark(), bark-package, bark-package-deprecated, sim_Friedman2(), sim_Friedman3(), sim_circle()

Examples

Run this code
sim_Friedman1(100, sd=1)

Run the code above in your browser using DataLab