Learn R Programming

base (version 3.0.3)

Round: Rounding of Numbers

Description

ceiling takes a single numeric argument x and returns a numeric vector containing the smallest integers not less than the corresponding elements of x.

floor takes a single numeric argument x and returns a numeric vector containing the largest integers not greater than the corresponding elements of x.

trunc takes a single numeric argument x and returns a numeric vector containing the integers formed by truncating the values in x toward 0.

round rounds the values in its first argument to the specified number of decimal places (default 0).

signif rounds the values in its first argument to the specified number of significant digits.

Usage

ceiling(x) floor(x) trunc(x, ...)
round(x, digits = 0) signif(x, digits = 6)

Arguments

x
a numeric vector. Or, for round and signif, a complex vector.
digits
integer indicating the number of decimal places (round) or significant digits (signif) to be used. Negative values are allowed (see ‘Details’).
...
arguments to be passed to methods.

S4 methods

These are all (internally) S4 generic. ceiling, floor and trunc are members of the Math group generic. As an S4 generic, trunc has only one argument. round and signif are members of the Math2 group generic.

Details

These are generic functions: methods can be defined for them individually or via the Math group generic.

Note that for rounding off a 5, the IEC 60559 standard is expected to be used, ‘go to the even digit’. Therefore round(0.5) is 0 and round(-1.5) is -2. However, this is dependent on OS services and on representation error (since e.g. 0.15 is not represented exactly, the rounding rule applies to the represented number and not to the printed number, and so round(0.15, 1) could be either 0.1 or 0.2).

Rounding to a negative number of digits means rounding to a power of ten, so for example round(x, digits = -2) rounds to the nearest hundred.

For signif the recognized values of digits are 1...22, and non-missing values are rounded to the nearest integer in that range. Complex numbers are rounded to retain the specified number of digits in the larger of the components. Each element of the vector is rounded individually, unlike printing.

These are all primitive functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

See Also

as.integer.

Examples

Run this code
round(.5 + -2:4) # IEEE rounding: -2  0  0  2  2  4  4
( x1 <- seq(-2, 4, by = .5) )
round(x1) #-- IEEE rounding !
x1[trunc(x1) != floor(x1)]
x1[round(x1) != floor(x1 + .5)]
(non.int <- ceiling(x1) != floor(x1))

x2 <- pi * 100^(-1:3)
round(x2, 3)
signif(x2, 3)

Run the code above in your browser using DataLab