Learn R Programming

base (version 3.3)

NumericConstants: Numeric Constants

Description

How R parses numeric constants.

Arguments

Details

R parses numeric constants in its input in a very similar way to C99 floating-point constants.

Inf and NaN are numeric constants (with typeof(.) "double"). In text input (e.g., in scan and as.double), these are recognized ignoring case as is infinity as an alternative to Inf. NA_real_ and NA_integer_ are constants of types "double" and "integer" representing missing values. All other numeric constants start with a digit or period and are either a decimal or hexadecimal constant optionally followed by L.

Hexadecimal constants start with 0x or 0X followed by a nonempty sequence from 0-9 a-f A-F . which is interpreted as a hexadecimal number, optionally followed by a binary exponent. A binary exponent consists of a P or p followed by an optional plus or minus sign followed by a non-empty sequence of (decimal) digits, and indicates multiplication by a power of two. Thus 0x123p456 is $291 * 2^456$.

Decimal constants consist of a nonempty sequence of digits possibly containing a period (the decimal point), optionally followed by a decimal exponent. A decimal exponent consists of an E or e followed by an optional plus or minus sign followed by a non-empty sequence of digits, and indicates multiplication by a power of ten.

Values which are too large or too small to be representable will overflow to Inf or underflow to 0.0.

A numeric constant immediately followed by i is regarded as an imaginary complex number.

An numeric constant immediately followed by L is regarded as an integer number when possible (and with a warning if it contains a ".").

Only the ASCII digits 0--9 are recognized as digits, even in languages which have other representations of digits. The ‘decimal separator’ is always a period and never a comma.

Note that a leading plus or minus is not regarded by the parser as part of a numeric constant but as a unary operator applied to the constant.

See Also

Syntax. For complex numbers, see complex. Quotes for the parsing of character constants, Reserved for the “reserved words” in R.

Examples

Run this code
## You can create numbers using fixed or scientific formatting.
2.1
2.1e10
-2.1E-10

## The resulting objects have class numeric and type double.
class(2.1)
typeof(2.1)

## This holds even if what you typed looked like an integer.
class(2)
typeof(2)

## If you actually wanted integers, use an "L" suffix.
class(2L)
typeof(2L)

## These are equal but not identical
2 == 2L
identical(2, 2L)

## You can write numbers between 0 and 1 without a leading "0"
## (but typically this makes code harder to read)
.1234

sqrt(1i) # remember elementary math?
utils::str(0xA0)
identical(1L, as.integer(1))

## You can combine the "0x" prefix with the "L" suffix :
identical(0xFL, as.integer(15))

Run the code above in your browser using DataLab