Learn R Programming

base (version 3.3)

QR.Auxiliaries: Reconstruct the Q, R, or X Matrices from a QR Object

Description

Returns the original matrix from which the object was constructed or the components of the decomposition.

Usage

qr.X(qr, complete = FALSE, ncol =) qr.Q(qr, complete = FALSE, Dvec =) qr.R(qr, complete = FALSE)

Arguments

qr
object representing a QR decomposition. This will typically have come from a previous call to qr or lsfit.
complete
logical expression of length 1. Indicates whether an arbitrary orthogonal completion of the $\bold{Q}$ or $\bold{X}$ matrices is to be made, or whether the $\bold{R}$ matrix is to be completed by binding zero-value rows beneath the square upper triangle.
ncol
integer in the range 1:nrow(qr$qr). The number of columns to be in the reconstructed $\bold{X}$. The default when complete is FALSE is the first min(ncol(X), nrow(X)) columns of the original $\bold{X}$ from which the qr object was constructed. The default when complete is TRUE is a square matrix with the original $\bold{X}$ in the first ncol(X) columns and an arbitrary orthogonal completion (unitary completion in the complex case) in the remaining columns.
Dvec
vector (not matrix) of diagonal values. Each column of the returned $\bold{Q}$ will be multiplied by the corresponding diagonal value. Defaults to all 1s.

Value

qr.X returns \bold{X}, the original matrix from which the qr object was constructed, provided ncol(X) <= nrow(x).="" if="" complete="" is="" true="" or="" the="" argument="" ncol="" greater="" than="" ncol(x),="" additional="" columns="" from="" an="" arbitrary="" orthogonal="" (unitary)="" completion="" of="" x="" are="" returned.qr.q="" returns="" part="" all="" q,="" order-nrow(x)="" transformation="" represented="" by="" qr.="" true,="" q="" has="" nrow(x)="" columns.="" false,="" ncol(x)="" when="" dvec="" specified,="" each="" column="" multiplied="" corresponding="" value="" in="" dvec.note="" that="" qr.q(qr,="" *)="" a="" special="" case="" qr.qy(qr, y) (with a diagonal y), and qr.X(qr, *) is basically qr.qy(qr, R) (apart from pivoting and dimnames setting).qr.R returns R. This may be pivoted, e.g., if a <- qr(x) then x[, a$pivot] = QR. The number of rows of R is either nrow(X) or ncol(X) (and may depend on whether complete is TRUE or FALSE).

See Also

qr, qr.qy.

Examples

Run this code
p <- ncol(x <- LifeCycleSavings[, -1]) # not the 'sr'
qrstr <- qr(x)   # dim(x) == c(n,p)
qrstr $ rank # = 4 = p
Q <- qr.Q(qrstr) # dim(Q) == dim(x)
R <- qr.R(qrstr) # dim(R) == ncol(x)
X <- qr.X(qrstr) # X == x
range(X - as.matrix(x))  # ~ < 6e-12
## X == Q %*% R if there has been no pivoting, as here:
all.equal(unname(X),
          unname(Q %*% R))

# example of pivoting
x <- cbind(int = 1,
           b1 = rep(1:0, each = 3), b2 = rep(0:1, each = 3),
           c1 = rep(c(1,0,0), 2), c2 = rep(c(0,1,0), 2), c3 = rep(c(0,0,1),2))
x # is singular, columns "b2" and "c3" are "extra"
a <- qr(x)
zapsmall(qr.R(a)) # columns are int b1 c1 c2 b2 c3
a$pivot
pivI <- sort.list(a$pivot) # the inverse permutation
all.equal (x,            qr.Q(a) %*% qr.R(a)) # no, no
stopifnot(
 all.equal(x[, a$pivot], qr.Q(a) %*% qr.R(a)),          # TRUE
 all.equal(x           , qr.Q(a) %*% qr.R(a)[, pivI]))  # TRUE too!

Run the code above in your browser using DataLab