# We use rep.int as rep is primitive
vrep <- Vectorize(rep.int)
vrep(1:4, 4:1)
vrep(times = 1:4, x = 4:1)
vrep <- Vectorize(rep.int, "times")
vrep(times = 1:4, x = 42)
f <- function(x = 1:3, y) c(x, y)
vf <- Vectorize(f, SIMPLIFY = FALSE)
f(1:3, 1:3)
vf(1:3, 1:3)
vf(y = 1:3) # Only vectorizes y, not x
# Nonlinear regression contour plot, based on nls() example
require(graphics)
SS <- function(Vm, K, resp, conc) {
pred <- (Vm * conc)/(K + conc)
sum((resp - pred)^2 / pred)
}
vSS <- Vectorize(SS, c("Vm", "K"))
Treated <- subset(Puromycin, state == "treated")
Vm <- seq(140, 310, length.out = 50)
K <- seq(0, 0.15, length.out = 40)
SSvals <- outer(Vm, K, vSS, Treated$rate, Treated$conc)
contour(Vm, K, SSvals, levels = (1:10)^2, xlab = "Vm", ylab = "K")
# combn() has an argument named FUN
combnV <- Vectorize(function(x, m, FUNV = NULL) combn(x, m, FUN = FUNV),
vectorize.args = c("x", "m"))
combnV(4, 1:4)
combnV(4, 1:4, sum)
Run the code above in your browser using DataLab