Learn R Programming

basicspace (version 0.25)

plotcdf.blackbt: Blackbox Transpose Coordinate Cumulative Distribution Plot

Description

plotcdf.blackbt reads an blackbt object and plots the cumulative distribution of the respondents and stimuli.

Usage

plotcdf.blackbt(x, align=NULL, xlim=c(-1.2,1), ...)

Value

A plot of the empirical cumulative distribution of the respondent ideal points, along with the locations of the stimuli.

Arguments

x

an blackbt output object.

align

integer, the x-axis location that stimuli names should be aligned to If set to NULL, it will attempt to guess a location.

xlim

vector of length 2, fed to the plot function as the xlim argument, which sets the minimum and maximum range of the x-axis.

...

other arguments to plot.

Author

Keith Poole ktpoole@uga.edu

Howard Rosenthal hr31@nyu.edu

Jeffrey Lewis jblewis@ucla.edu

James Lo lojames@usc.edu

Royce Carroll rcarroll@rice.edu

Christopher Hare cdhare@ucdavis.edu

References

David A. Armstrong II, Ryan Bakker, Royce Carroll, Christopher Hare, Keith T. Poole, and Howard Rosenthal. 2021. Analyzing Spatial Models of Choice and Judgment. 2nd ed. Statistics in the Social and Behavioral Sciences Series. Boca Raton, FL: Chapman & Hall/CRC. doi: 10.1201/9781315197609

Keith T. Poole, Jeffrey B. Lewis, Howard Rosenthal, James Lo, and Royce Carroll. 2016. ``Recovering a Basic Space from Issue Scales in R.'' Journal of Statistical Software 69(7): 1-21. doi:10.18637/jss.v069.i07

Keith T. Poole. 1998. ``Recovering a Basic Space From a Set of Issue Scales.'' American Journal of Political Science 42(3): 954-993. doi: 10.2307/2991737

See Also

'blackbox_transpose', 'LC1980', 'plot.blackbt', 'summary.blackbt', 'LC1980_bbt'.

Examples

Run this code
  ### Loads the Liberal-Conservative scales from the 1980 ANES.
  data(LC1980)
  LCdat <- LC1980[,-1]	#Dump the column of self-placements

  # \donttest{ 
  LC1980_bbt <- blackbox_transpose(LCdat, missing=c(0,8,9), dims=3, 
    minscale=5, verbose=TRUE)
  # }
  ### 'LC1980_bbt' can be retrieved quickly with: 
  data(LC1980_bbt)
  summary(LC1980_bbt)

  plotcdf.blackbt(LC1980_bbt)

Run the code above in your browser using DataLab