data(cheese)
cat(" Quantiles of the Variables ",fill=TRUE)
mat = apply(as.matrix(cheese[,2:4]), 2, quantile)
print(mat)
## example of processing for use with rhierLinearModel
if(0) {
retailer = levels(cheese$RETAILER)
nreg = length(retailer)
nvar = 3
regdata = NULL
for (reg in 1:nreg) {
y = log(cheese$VOLUME[cheese$RETAILER==retailer[reg]])
iota = c(rep(1,length(y)))
X = cbind(iota, cheese$DISP[cheese$RETAILER==retailer[reg]],
log(cheese$PRICE[cheese$RETAILER==retailer[reg]]))
regdata[[reg]] = list(y=y, X=X)
}
Z = matrix(c(rep(1,nreg)), ncol=1)
nz = ncol(Z)
## run each individual regression and store results
lscoef = matrix(double(nreg*nvar), ncol=nvar)
for (reg in 1:nreg) {
coef = lsfit(regdata[[reg]]$X, regdata[[reg]]$y, intercept=FALSE)$coef
if (var(regdata[[reg]]$X[,2])==0) {
lscoef[reg,1]=coef[1]
lscoef[reg,3]=coef[2]
}
else {lscoef[reg,]=coef}
}
R = 2000
Data = list(regdata=regdata, Z=Z)
Mcmc = list(R=R, keep=1)
set.seed(66)
out = rhierLinearModel(Data=Data, Mcmc=Mcmc)
cat("Summary of Delta Draws", fill=TRUE)
summary(out$Deltadraw)
cat("Summary of Vbeta Draws", fill=TRUE)
summary(out$Vbetadraw)
# plot hier coefs
if(0) {plot(out$betadraw)}
}
Run the code above in your browser using DataLab