if(nchar(Sys.getenv("LONG_TEST")) != 0) {
## simulate data from mixture of normals
n = 500
pvec = c(.5,.5)
mu1 = c(2,2)
mu2 = c(-2,-2)
Sigma1 = matrix(c(1,0.5,0.5,1), ncol=2)
Sigma2 = matrix(c(1,0.5,0.5,1), ncol=2)
comps = NULL
comps[[1]] = list(mu1, backsolve(chol(Sigma1),diag(2)))
comps[[2]] = list(mu2, backsolve(chol(Sigma2),diag(2)))
dm = rmixture(n, pvec, comps)
## run MCMC on normal mixture
Data = list(y=dm$x)
ncomp = 2
Prior = list(ncomp=ncomp, a=c(rep(100,ncomp)))
R = 2000
Mcmc = list(R=R, keep=1)
out = rnmixGibbs(Data=Data, Prior=Prior, Mcmc=Mcmc)
## find clusters
begin = 500
end = R
outclusterMix = clusterMix(out$nmix$zdraw[begin:end,])
## check on clustering versus "truth"
## note: there could be switched labels
table(outclusterMix$clustera, dm$z)
table(outclusterMix$clusterb, dm$z)
}
Run the code above in your browser using DataLab