powered by
lndMvst computes the log of a Multivariate Student-t Density.
lndMvst
lndMvst(x, nu, mu, rooti, NORMC)
Log density value
density ordinate
d.f. parameter
mu vector
inv of Cholesky root of \(\Sigma\)
include normalizing constant (def: FALSE)
FALSE
This routine is a utility routine that does not check the input arguments for proper dimensions and type.
Peter Rossi, Anderson School, UCLA, perossichi@gmail.com.
\(z\) \(\sim\) \(MVst(mu, nu, \Sigma)\)
For further discussion, see Chapter 2, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
lndMvn
Sigma = matrix(c(1, 0.5, 0.5, 1), ncol=2) lndMvst(x=c(rep(0,2)), nu=4,mu=c(rep(0,2)), rooti=backsolve(chol(Sigma),diag(2)))
Run the code above in your browser using DataLab