## load data
data(orangeJuice)
## print some quantiles of yx data
cat("Quantiles of the Variables in yx data",fill=TRUE)
mat = apply(as.matrix(orangeJuice$yx), 2, quantile)
print(mat)
## print some quantiles of storedemo data
cat("Quantiles of the Variables in storedemo data",fill=TRUE)
mat = apply(as.matrix(orangeJuice$storedemo), 2, quantile)
print(mat)
## processing for use with rhierLinearModel
if(0) {
## select brand 1 for analysis
brand1 = orangeJuice$yx[(orangeJuice$yx$brand==1),]
store = sort(unique(brand1$store))
nreg = length(store)
nvar = 14
regdata=NULL
for (reg in 1:nreg) {
y = brand1$logmove[brand1$store==store[reg]]
iota = c(rep(1,length(y)))
X = cbind(iota,log(brand1$price1[brand1$store==store[reg]]),
log(brand1$price2[brand1$store==store[reg]]),
log(brand1$price3[brand1$store==store[reg]]),
log(brand1$price4[brand1$store==store[reg]]),
log(brand1$price5[brand1$store==store[reg]]),
log(brand1$price6[brand1$store==store[reg]]),
log(brand1$price7[brand1$store==store[reg]]),
log(brand1$price8[brand1$store==store[reg]]),
log(brand1$price9[brand1$store==store[reg]]),
log(brand1$price10[brand1$store==store[reg]]),
log(brand1$price11[brand1$store==store[reg]]),
brand1$deal[brand1$store==store[reg]],
brand1$feat[brand1$store==store[reg]] )
regdata[[reg]] = list(y=y, X=X)
}
## storedemo is standardized to zero mean.
Z = as.matrix(orangeJuice$storedemo[,2:12])
dmean = apply(Z, 2, mean)
for (s in 1:nreg) {Z[s,] = Z[s,] - dmean}
iotaz = c(rep(1,nrow(Z)))
Z = cbind(iotaz, Z)
nz = ncol(Z)
Data = list(regdata=regdata, Z=Z)
Mcmc = list(R=R, keep=1)
out = rhierLinearModel(Data=Data, Mcmc=Mcmc)
summary(out$Deltadraw)
summary(out$Vbetadraw)
## plotting examples
if(0){ plot(out$betadraw) }
}
Run the code above in your browser using DataLab