# NOT RUN {
data("CrinsEtAl2014")
# }
# NOT RUN {
# compute effect sizes (log odds ratios) from count data
# (using "metafor" package's "escalc()" function):
require("metafor")
crins.es <- escalc(measure="OR",
ai=exp.AR.events, n1i=exp.total,
ci=cont.AR.events, n2i=cont.total,
slab=publication, data=CrinsEtAl2014)
print(crins.es)
# analyze using weakly informative half-Cauchy prior for heterogeneity:
crins.ma <- bayesmeta(crins.es, tau.prior=function(t){dhalfcauchy(t,scale=1)})
# show results:
print(crins.ma)
forestplot(crins.ma)
plot(crins.ma)
# show heterogeneity posterior along with prior:
plot(crins.ma, which=4, prior=TRUE)
# perform meta analysis using 2 randomized studies only
# but use 4 non-randomized studies to inform heterogeneity prior:
crins.nrand <- bayesmeta(crins.es[crins.es$randomized=="no",],
tau.prior=function(t){dhalfcauchy(t,scale=1)})
crins.rand <- bayesmeta(crins.es[crins.es$randomized=="yes",],
tau.prior=function(t){crins.nrand$dposterior(tau=t)})
plot(crins.nrand, which=4, prior=TRUE,
main="non-randomized posterior = randomized prior")
plot(crins.rand, which=4, prior=TRUE, main="randomized posterior")
plot(crins.rand, which=1)
# }
Run the code above in your browser using DataLab