# NOT RUN {
data("GoralczykEtAl2011")
# }
# NOT RUN {
# compute effect sizes (log odds ratios) from count data
# (using "metafor" package's "escalc()" function):
require("metafor")
goralczyk.es <- escalc(measure="OR",
ai=exp.AR.events, n1i=exp.total,
ci=cont.AR.events, n2i=cont.total,
slab=publication, data=GoralczykEtAl2011)
print(goralczyk.es[,c(1,10,12,13,15,16,17)])
# analyze using weakly informative half-Cauchy prior for heterogeneity:
goralczyk.ma <- bayesmeta(goralczyk.es, tau.prior=function(t){dhalfcauchy(t,scale=1)})
# show summary:
print(goralczyk.ma)
# show forest plot:
forestplot(goralczyk.ma)
# }
Run the code above in your browser using DataLab