Learn R Programming

bayesmeta (version 3.4)

CrinsEtAl2014: Pediatric liver transplant example data

Description

Numbers of cases (transplant patients) and events (acute rejections, steroid resistant rejections, PTLDs, and deaths) in experimental and control groups of six studies.

Usage

data("CrinsEtAl2014")

Arguments

Format

The data frame contains the following columns:

publicationcharacterpublication identifier (first author and publication year)
yearnumericpublication year
randomizedfactorrandomization status (y/n)
control.typefactortype of control group (‘concurrent’ or ‘historical’)
comparisonfactortype of comparison (‘IL-2RA only’, ‘delayed CNI’, or ‘no/low steroids’)
IL2RAfactortype of interleukin-2 receptor antagonist (IL-2RA) (‘basiliximab’ or ‘daclizumab’)
CNIfactortype of calcineurin inhibitor (CNI) (‘tacrolimus’ or ‘cyclosporine A’)
MMFfactoruse of mycofenolate mofetil (MMF) (y/n)
followupnumericfollow-up time in months
treat.AR.eventsnumericnumber of AR events in experimental group
treat.SRR.eventsnumericnumber of SRR events in experimental group
treat.PTLD.eventsnumericnumber of PTLD events in experimental group
treat.deathsnumericnumber of deaths in experimental group
treat.totalnumericnumber of cases in experimental group
control.AR.eventsnumericnumber of AR events in control group
control.SRR.eventsnumericnumber of SRR events in control group
control.PTLD.eventsnumericnumber of PTLD events in control group
control.deathsnumericnumber of deaths in control group
control.totalnumericnumber of cases in control group

Details

A systematic literature review investigated the evidence on the effect of Interleukin-2 receptor antagonists (IL-2RA) and resulted in six controlled studies reporting acute rejection (AR), steroid-resistant rejection (SRR) and post-transplant lymphoproliferative disorder (PTLD) rates as well as mortality in pediatric liver transplant recipients.

References

C. Roever. Bayesian random-effects meta-analysis using the bayesmeta R package. Journal of Statistical Software, 93(6):1-51, 2020. tools:::Rd_expr_doi("10.18637/jss.v093.i06").

C. Roever, T. Friede. Using the bayesmeta R package for Bayesian random-effects meta-regression. Computer Methods and Programs in Biomedicine, 299:107303, 2023. tools:::Rd_expr_doi("10.1016/j.cmpb.2022.107303").

T.G. Heffron et al. Pediatric liver transplantation with daclizumab induction therapy. Transplantation, 75(12):2040-2043, 2003. tools:::Rd_expr_doi("10.1097/01.TP.0000065740.69296.DA").

N.E.M. Gibelli et al. Basiliximab-chimeric anti-IL2-R monoclonal antibody in pediatric liver transplantation: comparative study. Transplantation Proceedings, 36(4):956-957, 2004. tools:::Rd_expr_doi("10.1016/j.transproceed.2004.04.070").

S. Schuller et al. Daclizumab induction therapy associated with tacrolimus-MMF has better outcome compared with tacrolimus-MMF alone in pediatric living donor liver transplantation. Transplantation Proceedings, 37(2):1151-1152, 2005. tools:::Rd_expr_doi("10.1016/j.transproceed.2005.01.023").

R. Ganschow et al. Long-term results of basiliximab induction immunosuppression in pediatric liver transplant recipients. Pediatric Transplantation, 9(6):741-745, 2005. tools:::Rd_expr_doi("10.1111/j.1399-3046.2005.00371.x").

M. Spada et al. Randomized trial of basiliximab induction versus steroid therapy in pediatric liver allograft recipients under tacrolimus immunosuppression. American Journal of Transplantation, 6(8):1913-1921, 2006. tools:::Rd_expr_doi("10.1111/j.1600-6143.2006.01406.x").

J.M. Gras et al. Steroid-free, tacrolimus-basiliximab immunosuppression in pediatric liver transplantation: Clinical and pharmacoeconomic study in 50 children. Liver Transplantation, 14(4):469-477, 2008. tools:::Rd_expr_doi("10.1002/lt.21397").

See Also

GoralczykEtAl2011.

Examples

Run this code
data("CrinsEtAl2014")
if (FALSE) {
# compute effect sizes (log odds ratios) from count data
# (using "metafor" package's "escalc()" function):
require("metafor")
crins.es <- escalc(measure="OR",
                   ai=exp.AR.events,  n1i=exp.total,
                   ci=cont.AR.events, n2i=cont.total,
                   slab=publication, data=CrinsEtAl2014)
print(crins.es)

# analyze using weakly informative half-Cauchy prior for heterogeneity:
crins.ma <- bayesmeta(crins.es, tau.prior=function(t){dhalfcauchy(t,scale=1)})

# show results:
print(crins.ma)
forestplot(crins.ma)
plot(crins.ma)

# show heterogeneity posterior along with prior:
plot(crins.ma, which=4, prior=TRUE)

# perform meta analysis using 2 randomized studies only
# but use 4 non-randomized studies to inform heterogeneity prior:
crins.nrand <- bayesmeta(crins.es[crins.es$randomized=="no",],
                         tau.prior=function(t){dhalfcauchy(t,scale=1)})
crins.rand  <- bayesmeta(crins.es[crins.es$randomized=="yes",],
                         tau.prior=function(t){crins.nrand$dposterior(tau=t)})
plot(crins.nrand, which=4, prior=TRUE,
     main="non-randomized posterior = randomized prior")
plot(crins.rand, which=4, prior=TRUE, main="randomized posterior")
plot(crins.rand, which=1)
}

Run the code above in your browser using DataLab