Learn R Programming

bayesmeta (version 3.4)

GoralczykEtAl2011: Liver transplant example data

Description

Numbers of cases (transplant patients) and events (acute rejections, steroid resistant rejections, and deaths) in experimental and control groups of 19 studies.

Usage

data("GoralczykEtAl2011")

Arguments

Format

The data frame contains the following columns:

publicationcharacterpublication identifier (first author and publication year)
yearnumericpublication year
randomizedfactorrandomization status (yes / no / not stated)
control.typefactortype of control group (‘concurrent’ or ‘historical’)
comparisonfactortype of comparison (‘IL-2RA only’, ‘delayed CNI’, or ‘no/low steroids’)
IL2RAfactortype of interleukin-2 receptor antagonist (IL-2RA) (‘basiliximab’ or ‘daclizumab’)
CNIfactortype of calcineurin inhibitor (CNI) (‘tacrolimus’ or ‘cyclosporine A’)
MMFfactoruse of mycofenolate mofetil (MMF) (y/n)
followupnumericfollow-up time in months
treat.AR.eventsnumericnumber of AR events in experimental group
treat.SRR.eventsnumericnumber of SRR events in experimental group
treat.deathsnumericnumber of deaths in experimental group
treat.totalnumericnumber of cases in experimental group
control.AR.eventsnumericnumber of AR events in control group
control.SRR.eventsnumericnumber of SRR events in control group
control.deathsnumericnumber of deaths in control group
control.totalnumericnumber of cases in control group

Details

A systematic literature review investigated the evidence on the effect of Interleukin-2 receptor antagonists (IL-2RA) and resulted in 19 controlled studies reporting acute rejection (AR) and steroid-resistant rejection (SRR) rates as well as mortality in adult liver transplant recipients.

See Also

CrinsEtAl2014.

Examples

Run this code
data("GoralczykEtAl2011")
if (FALSE) {
# compute effect sizes (log odds ratios) from count data
# (using "metafor" package's "escalc()" function):
require("metafor")
goralczyk.es <- escalc(measure="OR",
                       ai=exp.AR.events,  n1i=exp.total,
                       ci=cont.AR.events, n2i=cont.total,
                       slab=publication, data=GoralczykEtAl2011)
print(goralczyk.es[,c(1,10,12,13,15,16,17)])

# analyze using weakly informative half-Cauchy prior for heterogeneity:
goralczyk.ma <- bayesmeta(goralczyk.es, tau.prior=function(t){dhalfcauchy(t,scale=1)})

# show summary:
print(goralczyk.ma)

# show forest plot:
forestplot(goralczyk.ma)
}

Run the code above in your browser using DataLab