Learn R Programming

bayesmeta (version 3.4)

forest.bayesmeta: Generate a forest plot for a bayesmeta object (based on the metafor package's plotting functions).

Description

Generates a forest plot, showing individual estimates along with their 95 percent confidence intervals, resulting effect estimate and prediction interval.

Usage

# S3 method for bayesmeta
forest(x, xlab="effect size", refline=0, cex=1,...)

Arguments

x

a bayesmeta object.

xlab

title for the x-axis.

refline

value at which a vertical ‘reference’ line should be drawn (default is 0). The line can be suppressed by setting this argument to ‘NA’.

cex

character and symbol expansion factor.

...

other arguments.

Details

Generates a simple forest plot illustrating the underlying data and resulting estimates (effect estimate and prediction interval).

References

C. Lewis and M. Clarke. Forest plots: trying to see the wood and the trees. BMJ, 322:1479, 2001. tools:::Rd_expr_doi("10.1136/bmj.322.7300.1479").

R.D. Riley, J.P. Higgins and J.J. Deeks. Interpretation of random effects meta-analyses. BMJ, 342:d549, 2011. tools:::Rd_expr_doi("10.1136/bmj.d549").

See Also

bayesmeta, forest.default, addpoly, forestplot.bayesmeta

Examples

Run this code
data("CrinsEtAl2014")

if (FALSE) {
# compute effect sizes (log odds ratios) from count data
# (using "metafor" package's "escalc()" function):
require("metafor")
es.crins <- escalc(measure="OR",
                   ai=exp.AR.events,  n1i=exp.total,
                   ci=cont.AR.events, n2i=cont.total,
                   slab=publication, data=CrinsEtAl2014)
# derive a prior distribution for the heterogeneity:
tp.crins <- TurnerEtAlPrior("surgical", "pharma", "placebo / control")
# perform meta-analysis:
ma.crins <- bayesmeta(es.crins, tau.prior=tp.crins$dprior)

########
# plot:
forest(ma.crins, xlab="log odds ratio")

forest(ma.crins, trans=exp, refline=1, xlab="odds ratio")
}

Run the code above in your browser using DataLab