Learn R Programming

bayestestR (version 0.15.1)

describe_prior: Describe Priors

Description

Returns a summary of the priors used in the model.

Usage

describe_prior(model, ...)

# S3 method for brmsfit describe_prior( model, effects = c("fixed", "random", "all"), component = c("conditional", "zi", "zero_inflated", "all", "location", "distributional", "auxiliary"), parameters = NULL, ... )

Arguments

model

A Bayesian model.

...

Currently not used.

effects

Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated.

component

Should results for all parameters, parameters for the conditional model or the zero-inflated part of the model be returned? May be abbreviated. Only applies to brms-models.

parameters

Regular expression pattern that describes the parameters that should be returned. Meta-parameters (like lp__ or prior_) are filtered by default, so only parameters that typically appear in the summary() are returned. Use parameters to select specific parameters for the output.

Examples

Run this code
# \donttest{
library(bayestestR)

# rstanarm models
# -----------------------------------------------
if (require("rstanarm")) {
  model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
  describe_prior(model)
}

# brms models
# -----------------------------------------------
if (require("brms")) {
  model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
  describe_prior(model)
}

# BayesFactor objects
# -----------------------------------------------
if (require("BayesFactor")) {
  bf <- ttestBF(x = rnorm(100, 1, 1))
  describe_prior(bf)
}
# }

Run the code above in your browser using DataLab