Generate a sequence of n-quantiles, i.e., a sample of size n
with a near-perfect distribution.
distribution(type = "normal", ...)distribution_normal(n, mean = 0, sd = 1, random = FALSE, ...)
distribution_binomial(n, size = 1, prob = 0.5, random = FALSE, ...)
distribution_cauchy(n, location = 0, scale = 1, random = FALSE, ...)
distribution_poisson(n, lambda = 1, random = FALSE, ...)
distribution_student(n, df, ncp, random = FALSE, ...)
distribution_chisquared(n, df, ncp = 0, random = FALSE, ...)
distribution_uniform(n, min = 0, max = 1, random = FALSE, ...)
distribution_beta(n, shape1, shape2, ncp = 0, random = FALSE, ...)
distribution_gamma(n, shape, scale = 1, random = FALSE, ...)
distribution_custom(n, type = "norm", ..., random = FALSE)
distribution_mixture_normal(n, mean = c(-3, 3), sd = 1,
random = FALSE, ...)
rnorm_perfect(n, mean = 0, sd = 1)
Can be "normal"
(default), "cauchy"
, "poisson"
, "gamma"
, "chisquared"
, "uniform"
, "student"
or "beta"
.
Arguments passed to or from other methods.
number of observations. If length(n) > 1
, the length
is taken to be the number required.
vector of means.
vector of standard deviations.
Generate near-perfect or random (simple wrappers for the base R r*
functions) distributions.
number of trials (zero or more).
probability of success on each trial.
location and scale parameters.
location and scale parameters.
vector of (non-negative) means.
degrees of freedom (\(> 0\), maybe non-integer). df
= Inf
is allowed.
non-centrality parameter \(\delta\);
currently except for rt()
, only for abs(ncp) <= 37.62
.
If omitted, use the central t distribution.
lower and upper limits of the distribution. Must be finite.
lower and upper limits of the distribution. Must be finite.
non-negative parameters of the Beta distribution.
non-negative parameters of the Beta distribution.
shape and scale parameters. Must be positive,
scale
strictly.
# NOT RUN {
library(bayestestR)
x <- distribution(n = 10)
plot(density(x))
# }
Run the code above in your browser using DataLab