bayMCMC_np_global(data_x, data_y, data_xnew, warm = 1000, M = 1000,
mutprob = 0.44, errorprob = 0.44, mutsizp = 1, errorsizp = 1,
prior_alpha = 1, prior_beta = 0.05, err_int = c(-10, 10),
err_ngrid = 10001, num_batch = 20, step = 10, alpha = 0.95, ...)
step=10
, it keeps every 10th iteration of the MCMC outputH. L. Shang (2013) Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density, Computational Statistics and Data Analysis, 67, 185-198.
X. Zhang and R. D. Brooks and M. L. King (2009) A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation, Journal of Econometrics, 153, 21-32.
F. Ferraty, I. Van Keilegom and P. Vieu (2010) On the validity of the bootstrap in non-parametric functional regression, Scandinavian Journal of Statistics, 37, 286-306.
R. Meyer and J. Yu (2000) BUGS for a Bayesian analysis of stochastic volatility models, Econometircs Journal, 3(2), 198-215.
S. Chib (1995) Marginal likelihood from the Gibbs output, Journal of the American Statistical Association, 90(432), 1313-1321.
bayMCMC_np_local
, bayMCMC_semi_global
htm = proc.time()
dum = bayMCMC_np_global(data_x = simcurve_smooth_normerr, data_y = simresp_np_normerr,
data_xnew = simcurve_smooth_normerr, warm = 50, M = 100, range.grid=c(0,pi), q=2,
nknot=20)
proc.time() - htm
Run the code above in your browser using DataLab