funopare.kernel(Response, CURVES, PRED, bandwidth, ..., kind.of.kernel = "quadratic",
semimetric = "deriv")
PRED
can be the same as the CURVES
or the discretised data points of a new functional curveH. L. Shang (2013) Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density, Computational Statistics and Data Analysis, 67, 185-198.
X. Zhang and R. D. Brooks and M. L. King (2009) A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation, Journal of Econometrics, 153, 21-32.
F. Ferraty, I. Van Keilegom and P. Vieu (2010) On the validity of the bootstrap in non-parametric functional regression, Scandinavian Journal of Statistics, 37, 286-306.
F. Ferraty and P. Vieu (2006) Nonparametric Functional Data Analysis: Theory and Practice, Springer, New York.
F. Ferraty and P. Vieu (2002) The functional nonparametric model and application to spectrometric data, Computational Statistics, 17, 545-564.
bayMCMC_np_global
, bayMCMC_np_local
, bayMCMC_semi_global
, bayMCMC_semi_local
funopare.kernel(Response = simresp_np_normerr, CURVES = simcurve_smooth_normerr,
PRED = simcurve_smooth_normerr, bandwidth = 2.0, range.grid=c(0,pi), q=2, nknot=20)
Run the code above in your browser using DataLab