Learn R Programming

bbemkr (version 2.0)

gibbs_admkr_nw: Estimating bandwidths of the regressors

Description

Implements the random-walk Metropolis algorithm to estimate the bandwidths of the regressors

Usage

gibbs_admkr_nw(xh, inicost, k, mutsizp, prob, data_x, data_y)

Arguments

xh
Log of square bandwidths in the regression function
inicost
Cost value
k
Iteration number
mutsizp
Step size of random-walk Metropolis algorithm
prob
Optimal convergence rate for drawing single or multiple parameters
data_x
Regressors
data_y
Response variable

Value

x
Estimated bandwidths of the regression function
cost
Cost value, that is negative of log posterior
accept_h
Accept or reject. accept_h=1 indicates acceptance, while accept_h=0 indicates rejection.
mutsizp
Step size of the random-walk Metropolis algorithm

Details

1) The log bandwidths of the regressors are initialized using the normal reference rule of Silverman (1986).

2) Conditioning on the variance parameter of the error density, we implement random-walk Metropolis algorithm to update the bandwidths, in order to achieve the minimum cost value.

3) The bandwidth of the kernel-form error density can be directly sampled.

4) Iterate steps 2) and 3) until the cost value is minimized.

5) Check the convergence of the parameters by examining the simulation inefficient factor (sif) value. The smaller the sif value is, the better convergence of the parameters is.

References

X. Zhang and R. D. Brooks and M. L. King (2009) A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation, Journal of Econometrics, 153, 21-32.

B. W. Silverman (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall, New York.

See Also

mcmcrecord_admkr, logdensity_admkr, loglikelihood_admkr, logpriors_admkr, gibbs_admkr_erro