Learn R Programming

bbemkr (version 2.0)

warmup_admkr: Burn-in period

Description

By minimising the cost value, the function estimates the bandwidths of the regressors and kernel-form error density for the burn-in period

Usage

warmup_admkr(x, inicost, mutsizp, errorsizp, warm = 100, prob = 0.234, errorprob = 0.44, data_x, data_y)

Arguments

x
Log of square bandwidths
inicost
Cost value
mutsizp
Step size of random-walk Metropolis algorithm for the regressors
errorsizp
Step size of random-walk Metropolis algorithm for the kernel-form error density
warm
Number of burn-in iterations
prob
Optimal covergence rate of random-walk Metropolis algorithm for the regressors
errorprob
Optimal covergence rate of random-walk Metropolis algorithm for the kernel-form error density
data_x
Regressors
data_y
Response variable

Value

x
Log of square bandwidths
cost
Cost value
mutsizp
Step size of random-walk Metropolis algorithm for the regressors
errorsizp
Step size of random-walk Metropolis algorithm for the kernel-form error density

See Also

mcmcrecord_admkr, logdensity_admkr, loglikelihood_admkr, logpriors_admkr