Learn R Programming

bbemkr (version 2.0)

warmup_gaussian: Burn-in period

Description

By minimizing the cost value, the function estimates the bandwidths of the regressors and normal error variance parameter for the burn-in period

Usage

warmup_gaussian(x, inicost, mutsizp, warm = 100, prob = 0.234, data_x, data_y, prior_p = 2, prior_st = 1)

Arguments

x
Log of square bandwidths
inicost
Cost value
mutsizp
Step size of random-walk Metropolis algorithm
warm
Number of burn-in iterations
prob
Optimal covergence rate of random-walk Metropolis algorithm
data_x
Regressors
data_y
Response variable
prior_p
Hyperparameter of the inverse-gamma prior
prior_st
Hyperparameter of the inverse-gamma prior

Value

x
Log of square bandwidths
sigma2
Estimate of normal error variance
cost
Cost value
mutsizplast
Final step size of random-walk Metropolis algorithm
mutsizp
Step size of random-walk Metropolis algorithm

See Also

mcmcrecord_gaussian, logdensity_gaussian, loglikelihood_gaussian, logpriors_gaussian