Learn R Programming

bbmle (version 1.0.20)

BIC-methods: Log likelihoods and model selection for mle2 objects

Description

Various functions for likelihood-based and information-theoretic model selection of likelihood models

Usage


# S4 method for ANY,mle2,logLik
AICc(object,...,nobs,k=2)
# S4 method for ANY,mle2,logLik
qAIC(object,...,k=2)
# S4 method for ANY,mle2,logLik
qAICc(object,...,nobs,k=2)

Arguments

object

A logLik or mle2 object

...

An optional list of additional logLik or mle2 objects (fitted to the same data set).

nobs

Number of observations (sometimes obtainable as an attribute of the fit or of the log-likelihood)

k

penalty parameter (nearly always left at its default value of 2)

Value

A table of the BIC values, degrees of freedom, and possibly delta-BIC values relative to the minimum-BIC model

Methods

logLik

signature(object = "mle2"): Extract maximized log-likelihood.

AIC

signature(object = "mle2"): Calculate Akaike Information Criterion

AICc

signature(object = "mle2"): Calculate small-sample corrected Akaike Information Criterion

%\item{BIC}{\code{signature(object = "mle2")}: Calculate %Bayesian (Schwarz) Information Criterion} %\item{BIC}{\code{signature(object = "logLik")}: Calculate %Bayesian (Schwarz) Information Criterion} %\item{BIC}{\code{signature(object = "ANY")}: Calculate %Bayesian (Schwarz) Information Criterion}
anova

signature(object="mle2"): Likelihood Ratio Test comparision of different models

Details

Further arguments to BIC can be specified in the ... list: delta (logical) specifies whether to include a column for delta-BIC in the output.

Examples

Run this code
# NOT RUN {
  d <- data.frame(x=0:10,y=c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8))
  (fit <- mle2(y~dpois(lambda=ymax/(1+x/xhalf)),
      start=list(ymax=25,xhalf=3),data=d))
  (fit2 <- mle2(y~dpois(lambda=(x+1)*slope),
      start=list(slope=1),data=d))
  BIC(fit)
  BIC(fit,fit2)
  
# }

Run the code above in your browser using DataLab