The OptimInstanceAsyncSingleCrit
specifies an optimization problem for an OptimizerAsync.
The function oi_async()
creates an OptimInstanceAsyncSingleCrit.
bbotk::OptimInstance
-> bbotk::OptimInstanceAsync
-> OptimInstanceAsyncSingleCrit
new()
Creates a new instance of this R6 class.
OptimInstanceAsyncSingleCrit$new(
objective,
search_space = NULL,
terminator,
check_values = FALSE,
callbacks = NULL,
archive = NULL,
rush = NULL
)
objective
(Objective)
Objective function.
search_space
(paradox::ParamSet)
Specifies the search space for the Optimizer. The paradox::ParamSet
describes either a subset of the domain
of the Objective or it describes
a set of parameters together with a trafo
function that transforms values
from the search space to values of the domain. Depending on the context, this
value defaults to the domain of the objective.
terminator
Terminator
Termination criterion.
check_values
(logical(1)
)
Should points before the evaluation and the results be checked for validity?
callbacks
(list of mlr3misc::Callback)
List of callbacks.
archive
(Archive).
rush
(Rush
)
If a rush instance is supplied, the tuning runs without batches.
assign_result()
The OptimizerAsync object writes the best found point and estimated performance value here. For internal use.
OptimInstanceAsyncSingleCrit$assign_result(xdt, y, extra = NULL, ...)
xdt
(data.table::data.table()
)
Set of untransformed points / points from the search space.
One point per row, e.g. data.table(x1 = c(1, 3), x2 = c(2, 4))
.
Column names have to match ids of the search_space
.
However, xdt
can contain additional columns.
y
(numeric(1)
)
Optimal outcome.
extra
(data.table::data.table()
)
Additional information.
...
(any
)
ignored.
clone()
The objects of this class are cloneable with this method.
OptimInstanceAsyncSingleCrit$clone(deep = FALSE)
deep
Whether to make a deep clone.