In order to determine the statistical significance of the mutual information values between genes we test for each pair of genes the following null hypothesis.
H_0^I: The mutual information between gene i and j is zero.
Because we are using a nonparametric test we need to obtain the corresponding null distribution for H_0^I from a randomization of the data.
The formulated null hypothesis is performed by permuting the sample and gene labels for all genes of the entire expression matrix at once. The vector of the mutual information null distribution is obtained from repeated randomizations for a given number of iterations.
c3mtc(dataset, null=NULL, mtc=TRUE, adj="bonferroni", alpha=0.05, nullit=NA,
estimator="pearson", disc="none", adjacency=FALSE, igraph=TRUE)
default number of iterations: nullit=ceiling(10^5/(((genes*genes)/2)-genes)) genes: number of genes
minet package (discrete estimators) "mi.empirical", "mi.mm","mi.sg","mi.shrink"
c3net gaussian estimator (pearson) "gaussian"
bspline requires installation of "mis_calc" "bspline"
alternatively use "holm", "hochberg", "hommel", "bonferroni", "BH", "BY","fdr", "none" (see ?p.adjust())
de Matos Simoes R, Emmert-Streib F. Bagging statistical network inference from large-scale gene expression data. PLoS One. 2012;7(3):e33624. Epub 2012 Mar 30. PubMed PMID: 22479422; PubMed Central PMCID: PMC3316596.
de Matos Simoes R, Emmert-Streib F. Influence of statistical estimators of mutual information and data heterogeneity on the inference of gene regulatory networks. PLoS One. 2011;6(12):e29279. Epub 2011 Dec 29. PubMed PMID: 22242113; PubMed Central PMCID: PMC3248437.
c3
data(expmat)
net=c3mtc(expmat)
Run the code above in your browser using DataLab